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The concept playing a central role in the theory vKich vill bo 

described is the notion that the ensemble of points in signal space which 

represents a set of nonidentical events belonging to a common category 

must be close to each other as measured by some as yet unknown method of 

measuring distance, since the points represent events which are close to 

each other in the sense that they are members of the same category. 

Mathematically speaking, the fundamental notion underlying the theory is 

that similarity (closeness in the sense of belonging to the same class or 

category) is expressible by a metric (a method of measuring distance) by 

which points representing examples of the category we wish to recognize 

are found to lie close to each other. 

To give credence to this conjecture, consider what we mean by 

the abstract concept of a class.    According to one of the possible 

definitions, a class is a collection of things which have some common 

properties.    By a modification of this thought, a class could be character- 

ised by the common properties of its members.    A metric by which points 

representing examples of a class are close to each other must therefore 

operate chiefly on the common properties of the examples and must ignore,'' 

to a large extent, those properties not present in each example.   As a 

consequence of this argument, if a metric were found which called examples 

of the class close, somehow it must exhibit their common properties. 

To present this fundamental idea in a slightly different way, we 

can state that a transformation on the signal space which is capable of 

clustering the points representing the examples of the class must operate 

primarily on the common properties of the examples.   A simple illustration 
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of this idea is Bhow» in Figure 1, where the eneeBble of points is spread 

out in signal space (only a two-difflsnsional space is shown for ease öf 

illustration) but a transformation T of the space is able to cluster the . 

points of the ensemble. 

2i 

• • •• 

1 -1' 

Figure 1.    Cluatering by Transformation 

In the above example neither the signal's property represented by coordinate 1 

nor that represented by coordinate 2 is sufficient to describe the class, 

for the spread in both is large over the ensemble of points.    Some function 

of the two coordinates on the other hand, would exhibit the common property 

that the ratio of the value of coordinate 2 to that of coordinate 1 in each 

point in the ensemble is nearly unity.    In this specific instance, of 

course, simple correlation between the two coordinates would exhibit this 

property, but in more general situations simple correlation will not suffice. 

If the signal space shown in Figure 1 were flexible (as if made of 

a rubber sheet), the transformation T would express the manner in which 

various portions of the space must be stretched or compressed, in order to 

bring the points together most closely. 
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Although thinking of transformations of the space is not as general 

as thinking about exotic ways of measuring "distance" in the original space, 

the former is a rigorously correct and easily rlsualised analogy for nany 

important classes of metrics. 

Mathematical techniques have been dereloped to automatically find 

the "best" metric of "best" transformation of given classes of metrics 

according to suitable criteria which establish "best". 

As any mathematical theory, the one vhlch evolved from the 

proceeding ideas is based on certain assumptions. The most basic assumption 

is that the N-dimenslonal signal space representation of events exemplifying 

their respective classes is complete enough to contain information about the 

common properties vhlch serve to characterize the classes. The significance 

of this assumption is appreciated if we consider, for example, that the 

signal space contains all the information that a black and white television 

picture could present of the physical objects making up the sequence of 

events which constitute the examples of a class. No matter how ingenious 

the data processing schemes that we might evolve are, objects belonging to 

the category "red things" could not be identified, because representation 

of the examples by black and white television simply does not contain 

color information. For any practical situation one must rely on engineering 

Judgment and intuition to determine if the model of the real world (the 

signal space) is complete enough. Fortunately, in most cases, this 

determination may be made with considerable confidence. 

A second assumption states the class of transformations or the 

class of metrics within which we look for the "best". This .assumption 
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2, A SPECIAL THEORY OF SDUIARITI 

2.1 SlalXarity 

The central problem of pattern recognition Is Tiewed In this 

work as the problem of developing a function of a point and a set of 

points In an W-diaenslonal apace to partition the space Into a number of 

regions oorrespondlng to the categories to which the known set of points 

belong. A convenient special—but not essential—wa7 of thinking about 

this partitioning function is to consider it formed ftron a sst of functions, 

one for each categoiy, where each function measures the "likelihood"* 

with which an arbitrary point of the space could best fit into the par- 

ticular function's own categoiy. In a sense, each function nasures the 

similarity of an arbitrary point of the space to a categoiy and the par- 

titioning function assigns the arbitrary point to that categoiy to which 

the point is most similar. 

The foregoing concept of partitioning the signal apace Is 

illustrated in Figure 2 where the signal space has two dimensions and the 

space is to be partitioned into two categories. In figure 2a, the height 

of the surface aboTe the x-y plane expresses the likelihood that a point 

belongs to Category 1, while that of the surface in Figure 2b expresses 

the likelihood that the point belongs to Categoiy 2. The intersection 

between the two surfaces, shown in Figure 3a and b, marks the bouniaiy 

between Region 1 where points are more likely to belong to Category 1 

than to Category 2, and Region 2, where the reverse is true» 

* Although the tern "likelihood" has an alreacfcr well-defined meaningTn 
decision theory, it is used here in a qualitative way to emphasize the 
similarity between fundamental ideas in decision theory and in the 
theory which is here described* 

UNCLASSIFIED 



•- 

UNCLASSIFIED 

a) "LLkelihood" of Menborship in Category 1 

b) "Likelihood'' of Membership in Category 2 

Figure 2.    Likelihood of Membership in Two Categories 
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Figure 3. Classification by Maximum Likelihood Ratio 
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For each category of Interest a set of likelihood ratios may 

be computed which express the relative likelihood that a point in qosstion 

belongs to the category of interest rather than to any of the other«. 

Fron the icaxlmum of all likelihood ratios which correspond to a given point, 

we nay infer to which category the point most likely belongs. 

The reader will recognize the idea of making decisions baaed on 

the maximura likelihood ratio as one of the important concepta of decision 

theory. The objective of the preceding discourse is, therefore, 8l^>ly 

to make the statement that once a function measuring the likelihood that 

a point belongs to a given category is developed, there is at least one 

well-established precedent for partitioning signal space into regions 

which are associated with the different categories. The resulting regions 

are like a template which serves to categorise points depending vpon whether 

th«y are covered or are left uncovered by the template. Although in the 

rest of this chapter partitioning the signal space is based on a measure of 

similarity which ressmbles the likelihood ratio only in the nannsr in which 

it is used, it is shown elsewhere  that, in certain cases, decisions 

based on the measure of similarity ar.e identical to those based on the 

maximum likelihood ratio. 

One might vender whether the error criterion by which similarity to 

a class of things is measured should be based on known members of the class 

only, or also on the additional knowledge gained from a set of things idiich 

do not belong to the class. The philosophical question posed by these two 

possibilities is whether one is aided in learning to recognize membership in 

a category if, during the period of learning, examples of nonmembers of the 

category are also given. It seems plausible that increasing the knowledge 

available on members and nonmembers of the categoiy may better the separation 
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betMcon categories. There are significant oategoriea, hoHevor, where 

knowledge of nonnenbers does not help to determine "hat constitutes 

nenberahip in the category. The analogoua situation in decision theory 

is pointed out later. 

In the first three chapters of thin report, a quantitative aeaaure 

of similarity is developed in a special theory where similarity is con- 

sidered as a property of only the point to be compared and the set of 

points vhich belong to the categoiy to be loarnod. In later chapters, 

however, methods will be discussed for letting known nonmembers of the 

class influence the development of measures of similarity. 

In the special theory of the first three chapters, similarity of an 

event P to a category is neasured by the closeness of P to every one of 

those events SF ? known to be contained in the category. Similarity S 

is regarded as the average "distance" betv.'eon P and the class of events 

represented by the set JF 2 of its examples. 

Two things should be noted about the foregoing definition of 

similarity. One is that the method of measuring distance does not 

influence the definition. Indeed, distance is not meant here in the 

ordinary Euclidean sense; it r.gy mean "closeness" in some arbitrary, 

abstract property of the set 5F 2 which has yet to be determined. The 

second thing to note is that the concept cf distance between"points, or 

distance in general, is not fundamental to a concept of similarity. The 

only aspect of similarity really considered essential is that it is a 

real valued function of a point and i set which allows the ordering of 

points according to their similarity to the set. The concept of distance 

is introduced here as a mathematical convenience based on intuitive notions 

i i 

13 

UNCLASSIFIED 
■   ■ . . 



UNCLASSIFIED 

pf similarity. It will be »parent later hov this forms part of the 

asstaptiona stated in the Introduction as underlying the theory to be 

presented. Even with the introduction of the concept of distance there 

are other vqrs of defining similarity. Nearness to the closest nenber 

of the set is one such possibility. This implies that an event is similar 

to a class of events if it is close in sons sense to any member of the class* 

It is not the purpose of thle chapter to philosophize about the relatiTe 

merits of these different w«ys of defining similarity. Their advantages 

and disadTantages will become apparent as this theory is developed, and the 

reader will be able to Judge for himself which set of assumptions is most 

applicable under a given set of clrcumstanoes. 

To summarise the foregoing remarks, for the purposes of the 

special theory, similarity S (p, Jp^) of a point P and a set of points 

[Fra] exBnplifylr.g a claes will be defined as the average distance between 

the point P and the M members of the set £P } , This definition is expressed 

by Hquatlon 2.1, where the metric d( )—ths method of measuring distance 

between two points—is left unspecified. 

* 

To deserve the name metric, the function d( ) must satisfy the* usual 

conditions stated in Equation 2.2 a, b, c and d. 
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d(A,ß) - d(B,A) (apuMtrlo fonotion) (2.2a) 

d(A,C)^ d(A,B) ♦ d(B,C) (trUngl» inequtlity) (2.2b) 

d(A,B)2:0 . (non-o»|*tlT«)     (2.2c) 

d(A,B) - 0 if, and only if, A • B                (2.2d) 

2.2 Optlnitatlon and Feature Vfeigfrtlng 

In the definition of sinilarity of the preceding section the 

average distance between a point and a set of points serred to measure 

similarity of a point to a set. The method of measuring distance, however, 

vaa left unspecified and was understood to refer to distance In perhaps some 

abstract property of the set. In this section the criteria for finding 

the "best" choice of the metric are discussed, and this optimization is 

applied to a specific and simple class of metrics which has interesting 

and useful properties. 

Useful notions of "best" in mathematics are often associated with 

finding the extrena of the functional to be optimized. We magr seek to 

minimize the average cost of our decisions or we may maximize the probability 

of estimating correctly the value of a random variable. In the problem 

above, a useful metric, optimal in one sense, is one which minimizes the« 

average distance.between members of the same set subject to certain suitable 

constraints devised to assure a nontrivial solution. If the metric is 

thm^it of as extracting that property of the set in which like events 

are clustered, then the average distance between members of the set is a 

measure of the size of the cluster so formed. Minimization of the average 

distance is then a choice of a metric which minimizes the size of the cluster 

I ! 
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and therefore «xtraotf that property <* th« set in which the* tn aoit alite. 

It 1« only proper that a dlattnce Mature ahall idaUdM the arortfi dlataaeo 

between thoee event e which art aeleoted to enaplliy tvtatt that an ■oloee". 

ilthou^i thla preceding criterion Car finding the boat oolntlCNi 

la a Teiy reaaonablo and »eaningfttl aaraptloa on «hieh to baao the apoeial 

theory, it la by no wane the only poaeiblllty,   NinlMLaatlon of the MOdaa 

dlataaeo between nenbera of a set la just one of the possible altematiToa 

that iaMdiately auggesta Itself.   It ahould bo pointed out that ultinately 

the beat solution is that which results in the largsst nuaber of correct 

classifications of events.   Making the largest number of correct dedsiohs 

on the known events is thus to be maxiniied and is itself a suitable 

criterion of optiaiiation which will be dealt with elsewhere in this report. 

Since the priaazy purposs of this chapter is to ontlins a point of view 

regarding pattern recognition through a special eza^le, the choice of 

"best" previously described and stated in Bjuation 2,3   will be naad, for 

it leads to very useful solutions with relative siaplicity of the mathsaatlos 
a • 

involved. In Bquation 2.3 F and Fm are the p  and a members of the 

over all choices 
(2.3) 

of d( ). 

Of the mazy different mathematical forms which a metric may 

take, in the special theory here described only metrics of the form given 

by Equation 2.I4 will be considered. The intuitive notions underlying 

16 
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th« choice of the mtrle in this form ere baaed on ideee of "feature 

•ei^htlng" «hieh will he developed below. 

d(A,B) yj^r V UM) 

I 
I 
I 

In the feallier Euclidean R-dlneneional apace the dletenoe between 

the two pointe A and B le defined by Equation 2.5. If A and B are 

expreaaed in terme of an orthcnormal coordinate BTetea \9 \ , then d(AtB) 

of Bqnation 2.5 can be written as In aquation 2.6, where a and b . n n' 
reapectlTely, are the coordinates of A and B In the direction of 6 . 

d(A,B) - | A - B|. 

d(A,B) .gu-b/. 

(2.5) 

(2.6) 

We must reallie, of course, that the featuree of the evente 

represented by the different coordinate directions 9 are not all equally 

important in influencing the definition of the category to which like events 

belong. Therefore it is reasonable that in comparing two points feature 

by feature (as is expressed in Equation 2.6), features with decreasing 

significance should be weighted with decreasing weights W , The idea of 

feature weighting is expressed by a metric somewhat more general than the 

conventional Euclidean metric. The modification is given in Equation 2,7, 

where W is the feature weighting coefficient. 

17 
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It ia readily verified that the r.bove netric satiafies the condltiona atated 

in Bquation 2,2 if none of the '•' 's is 2ero| if aiy of the Wn coef/lcienta 

is zero, Bjuation 2.2d is not «ntiafled. 

It is important to note that the above metric gives a numerical 

measure of "closeness" botvoen two noints, A and B, vhich is strongly 

influenced by the ^articular set of similar events £p ? #   This ia a logical 

result, for a raensure of similarity betMoen A and B should depend on ho;» 

our notions of similarity v<jre shaped by the set of events taiown to be 

similar.   When we deal with a different set of events which have different 

similar features, our JudRement of similsrlty between A and B will also 

be baaed on finding agreement between them along a changed set of their 

features. 

An alternate and instructive way of explaining the significance 

of the class of metrics given in Equation 2,1 is to recall the analogy 

made in the Introduction regarding transformations of the signal space. 

There, the problem of expressing uhat i/as similar among a set of events 

of the same category '-/as accomDlished by finding that transformation of the 

signal space  (again, subject to suitable constraints), which x-dll cluster 

most.highly the transformed events in the new space.    If we restrict 

ourselves to those linear transformations of the sigial space which involve 

only scale factor changes of the coordinates and if we measure distance 

18 
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In the nag space ly the EuoUdekn metric, then the AieUdean diettaoe beteeen 

tuo pointe after their linear transfomation ie equivalent to the flMtare 

«ei^iting netrie of »jaation 2.1i.   Thl» equivalence la ehom belewv »»here 

A« and B« are Teotors obtained ftrom A and B ly « li»«" trenefoi^tion. 

The nost general linear transfomation is ejqpreesed I7 Bquation 2«9« where 

of the vector B, 

a' is tto n1* coordinate of the traneforaed vector A and b« ia thai 
n 

and   B - bnen n n 

M - W M M ■ WM- 
[A« - B j - [A - E) [W] 

r^-b^),(a^b'),...f (a^bjjj - fvV/vV,...,(a^J ,,21W22*,,,,2I 

WHIWB2,,,WIIII 

(2.8a) 

(2.8b) 

(2.8c) 

(2.9) 

kr The Euclidean distance between A« and B«, dR(A', B»), is given in Bquation 

2.10. 

^•,B.) -ip^/^t^wY'' (2.10) 

UNCLASSIFIED 

19 



■" UNCLASSIFIED 

If the Umar tranafonwtlon infolvea only «cal» f«otor ohmnget of tho 

coordiiutea, only t»» olawnts on tht Mln diafonal of iht V matrix art 

non-wro, thuo wdnelnf ^ik*, B«), In thi« ■poclal OM«, to tte fo» 

ftvon in Bquatlon 2.11. 

i i 

Special d. (A-.B.).^ nn  n  n 
(2.11) 

Tha abova claas of raatrica vlll ba uaed In »juatlon 2.3 to mlniadia tha 

avaraga diatanoa batvaan tha aat of point». Because of the nathautieal 

difficulty of niniwiaing tha aim of square roota of quantitiaa, wa will 

nininisa Instead the naan-equare distance whan nanbera of j?n} are 

conpared with each other. 

The nathanatical formolation of tha aboTa minimiaation ia ghran 

in Bquationa 2,12a and 2;12b. The algnificance of the constraint 2,12b 

is, for the case eonsidared, that every weight w^ ia a number between 

0 and 1 (w 'a turn out to be positive) and it can be interpreted as the 
nn 

fractional value of the features ^n which tlwy weight, w^ denotea the 

fractional value which Is assigned in the total measure of dietance to the 

degree of agreement that exlsta between the components of the compared 

vectors. 

AA x 
^■^kkk^' -f   )' mn       pn' minimum. (2,12a) 

UNCLASSIFIED 
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ifliy™"1- (2.12b) 

'" 

Although the constraint of 2.12b is •ppeallnf fro« a fMturt- 

velghting point of viev, fron a strictly cathsnatlcal standpoint it Itaves 

tauch to bo desired. It does not guarantee, for instance, that a siaple 

shrinkage in the size of the signal space is disallowed. Such a shrinkage 

would not change the relatiTe orientation of the points to each other, 

the property really requiring alteration. The constraint given in 

Equation 2,13, on the other hand, states that the voltne of the space is 

constant as if the space were filled with an inconprsssible fluid. Her« 

one merely wishes to determine what kind of a rectangular box could contain 

the space so as to minimite the mean-square distance aaong a set of points 

imbedded in the space. 

t nn (2.13) 

The minijiiization problem   with both of these constraints will 

be worked out in the following equations, and it will»be seen that the 

results are quite similar. 

Interchanging the order of summations and expanding the squared 

ejepression in Equation 2,12a yields Equation 2.1ij, where it is recognized' 

2 * * * that the factor multiplying w       is the variance of the coefficients of ths 

6   coordinate.   Minimization of Equation 2.11i under the constraint 2.12b. 

yields Equation 2.15, where p is an arbitrary constant.   Imjjosing contraint 
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2,12b again, m can solve for vm, obtaining Squation 2.14>. 

2H ,n s-2, 2K N 

n nn    "n      "n '      (K~l) ^^ "on      n 
2      2 

r.i-A 

fw      CT2 - /*1- 0. for n - 1, 2, .... N, [ nn     n j      ' (2.15) 

y* 

an ^7 *7 
(2.16) 

That the values of v     so found ire indeed those '-ihlch nininize 

D   of Equation 2,12a can be seen by noting that D   is an elliptic para- 

boloid in an U-dinensional space and the constraint of 2.12b is a plane 
» 

of the sa-ne dimensions.    For a three-dimensional case, this is illustrated 

in figure li.   The intersection of thedliptic paraboloid witji the plane 

is a curve whose only point of zero derivative is a minimum. 

The phvsicr.l interpretation of weighting features b? the 

reciprocal of th»ir variances is given below. 

If the variance of a coordinate of the ensemble is large, then 

the corresponding w     is small, indicating that small vreight is to be given 

in the overall measure of distance to a feature of large variation.    If the 
m 

variance of the mamitude of a given coordinate 6n is small, on the other 

hand, then its value can be accurately anticipated; therefore 9 should 

be counted heavily in a measure of similarity. It is important to note 

22 
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PLANE 

DZ ■ MINIMUM 

ELLIPTIC  PARABOLOID 

Figure k.    Geometric Interpretation of Minimization 

I i 
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1 

i 

that In the extreme case, where the variance of the nagnltude of a conponent 

of the set is zero, the corresponding v^ in Equation 2,16 is equal to 

unity with all other M   'S equal to zero.   In this case, although Bouation 
' nn 

2,11 is not a le^itiKate netric since it do«s not satisfy aquation 

2,2, it is still a meaningful measure of slnilnrity. If aiy coordinate 

occurs vith identical magnitudes in all members of the sot, then it Is 

an "all important" feature of the set and nothing else needs to be 

considered in Judging the events similar. Judging membership in a category 

by such an "all important" feature may, of course, result in the incorrect 

Inclusion of nonmembers into the category. For instance "red, nearly 

circular figures" have the color red as a coraiün attribute. The trans- 

formation described thus for would pick out "red" as an all important 

feature and would judge membership in the category of "rod, nearly 

circular figures" only by the color of the compared object. A red square, 

for instance, would thus be misclassified and judged to be a "red, nearly 

circular figure". Oiven only examples of the catertory, on the cthr»r hand, 

such results would probably be expected.   Later on, however, where 

labeled examples of all catepories of interest are assumed given, only 

those attributes are emphasized in which members of s. catepory are alike 

and in which they differ from those of other categories. 

It should be noted that the weighting coefficients do not nec- 

essarily decrease monotonically in the above feature wei^iting which 

minimizes the mean-square distance among M given examples of the class. 

Furthermore, the results of Equation 2.16 or 2.18 are independent of the 

2k 
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particular orthonomal system of coordinates, aquations 2.16 and 2.18 

sinpOy state that the weighting coefficient is inversely proportional to 

the variance or to the standard deviation of the ensemble along the 
o 

corresponding coordinate.   The numerical values of the variances, on the 

other hand, do depend on the coordinate ^sten. 

If we use the rnatba^tlcally more appealing constraint of 

Equation 2.13 in place of thnt in 2.12b, ve obtain 3quntion 2.17. 

:: 

2 
min D   ■ mir. 2 2  ^.2 ii     er rn    w h r."l 

S^f-nn^^J^-0 

(2.17a) 

(2.17b) 

It is readily seen that by applying Equation ?.l7a, the expre^aion 

of 2.17b is equivalmt to Equation 2.1ßa, -rhere the bracketed expression 

rau!5t be zero for all values of n.   This substitution leads to Equation 2.18b 

which may be reduced to Equation 2.l8c by application of Equation 2.17a once 

more. 

y dw    (w    cr2 -  ^-    = o 
£-L      nn     nn     n wnM n»! nn 

(2.18a) 

(2.18b) 
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w 
««      ^-i ^ P <y. 'J p-1      *y »n 

Thus It is scan that the fyature ^ichting ■oefficlent w      is 

proportional to the  reciprocal aUniird deviation rf the n     coordinates, 

therebr.' lending itself to the  -na-e ifi»j«l of intcrprotntion üS before, 

2.3   Describing the Catenory 

The set of kno'm '«inb ra is the bast flescnption rf the aategory, 

Follovine the practice of orobabllity theory, this sot of similar events 

can be dascribed by its at^tlslicsi    the cr.ser.blo noa*-., variance,  and 

higher r.onents can bo speciflod ns its characteristic prcpertiea.    For 

cur purposes a more 3ui,.Avli   rsscrinticn cf our  idea of the category,  on 

the other -and, is found in the specific:  forn of the function S of 

Bqua+ion ?.l developed fror, the sot  'f similar even'.s to r-ensuro non'ershlp 

in the category.    A r-.arlrcd disadv<intaRe of S is that (In a  nachine --liich 

itnplements its application) the amount   of storage capacity •tich must be 

available is rro-jortional to * he njr,b?r  of flvents introduced a-.d is  tnus 

a gro'//ing quantity.    For this   reason a -iescripticn of the   «et of points 

is  desired in the form of a noint E vhich nay be  considersd most  typica] 

of the ensemble of points belonging to the «set.     Dencr iVing tha '.mterorj 

by means of a single  ooint is   analogous  to rlesignating a particulAj' 

capital A as characterising the sot :f Hiff^rent  capital A:s that are 

encountered.     This single A ta'-es Vy pl^icy ^f thß entire  e,i.';cr'b1e of iVn 

and represents it by beinn the  typifying example of the set.    The nost 

important attribute to the _typifying example,  from the point rf.,viir;'/ of 
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correctly representing the set, is ttot t1« "di3ta»«en »oasured between 

an arbitrary point P and S should agree with the noan-square distance 

neaaured by the function S betveen P ani nvfeera of tho set.   The distance 

in both cases is neasurcd vii* the »etric «iavelopod In the preceding section. 

The equality of those dlstnnces is stated in Equation 2.1?, •'%>«* on is 

the coordinate of E in the 9   dtrecucn and p   is the coordinate of ? in n n 

the sans direction. 

M. W > ■ r Ü v <-■" - CJ ■ t ^** • •")2-   (2:19> 

Interchanfring tho order of ra-r.atic-.s, expanding the squares, and collecting 

like ter^s yields 3qrntion 2,20. 

- 

I   : 

T w 2  ("e 2 - 23 e    •   Ü : - 2].?) N 0. -^   n    [ n • n n a « n nJ 
(2.20) 

This equation does not have a unic:e solution unless furtbor constraints 

are linposed.    A convenient set of constraints is fhe requirement that 

the above equality hold for any choice of tho metric.    This can be 

sho'.-m to mean that the equation must hold for each n.    Under this constraint 

the unique solution for E is given oy equation 2.21a and 2.21b. ^ 

E - >    e 6 , (2.21a) 
^--    n n* nal 
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vhere 

o - "n i /"n2 * f„2 - \ "„ " •>„ 1 A=„-Fn)
2 • ö-n

2.' (2.?lb) 

The intoresting aspect cf this result is th^t the choice of the 

typifying vector B depends on F, the vector to be conpared to tho set. 

This fact does not render E any loss aifTnincan*.,    Ir.jtoad cf cireri-g 

P with every r.eraber of the sol, ns In Brj'jation 2,11 It Is equivalont 

to conpare it with S, jriven in Squatio:; ?,21,    "nte act of 5:no-.T. nenbors 

of the category appears in E as the constants f     and f , nhich r-ay bo 

computed once and for all,   Tnis fact has important inplications regarding 

the anount of infornaticn ''hich rast be stcrod.    In the conparison of an 

arbiträr/ point P «1th t^e -»et JP.^by -cans of the function S(F, I? X ), 

.all K ner.bors of tbe *ni nu^t bo stored, each havinp 11 cocrdinatos.   The 

total stored information abotit the *•*•  is thus I'M nunbsrs.    In the 

comparison cf P •■•ith E, on ths oth>'r hn.-.i, the f.ctal storage is only 211 

numbers. 

2,[|    Choosing the Optir.',i Orthcg^i-tl Coordinate System 

Tho labeled "vents vhich belong to one catofpry have b.-.en 

assumed given as vectors in an a priori selected coordinate system which 

expressed features of the evont-j thoug.iL rcl-j" -.'.■'.. '•- the determination of 

the category.    An optimum set of feature weighting coefficients were then 

found through which similar events could be judged most similar to one 

another.    It would be purely coincidental, hcever, if the features 

represented by the given coordinate system ''ere optimal in expressing 
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the similarities anong ner.bers of the set.   In this section, therefore, ^ 

look for a new set of coordinates, spanning the san» space, and expressing 

a different set of features which nininize the nean-square distance 

betii?en nenbers of the sei.   The proben just stated can be thought of as 

either enlarging the class of retries considered thus far in the measure 

of sinllarity defined earlier or as enlarging the class of transformations 

of the space »dthln whish class ■•o look for that particular transformation 

which minimises the r.ea:.-square distance between similar events. 

It '.i-as proved earlier '.hat tuü linenr transformation which changes 

th the scale of the n '  dimension of the space by the factor M_ while- nn 

keeping the volume c:' f-'e space constant and minimizing the mean-square 

distance between the transfcrmed vectors is giver, by Equation 2,22, 

F'    -   P Q/J,     -»here fwj - '11 
H. 22 

w, NN 

(2.22a) 

and 

'MPVP f^ r h 
(2.22b) 

The mean-square distance under this transformation is piven by Equation 

2.23 and is a minimum for the given choice of  orthogonal coordimte system. 

ITUT^T p««l m^l n=l 
wnn    (fmn 

f    )    = mininiian, 
Pn (2.23) 
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It ia poarttlMf howBTer, to rotate the ooonilnate qretea until one it 

fonnl vhlch mlnlÄltes thi above niniJBum mean-equare dletaoee.   Hieraaf 

the flrat minljd«atlon took place with reapect to all choices of the 

w   »e, we are now Interaated in further «inlaiaing thle ty first rotating 

the coordinate qratan so that the above optinun choioe of w^'a should 

reeult in the abaoluta minimun distance between vectors.   The solution 

of ths above ssaroh for the optlmm transformation may be conven4.«ntly 

stated in ths form of ths following theorem. 

Theoif 

The linenr tranafcreation which, after transformation, rainimiiss 

the msan-square distance between a set of vectors, subject to the 

eonatraint that ths volums of the space is invariant undsr transformation, 

is a rotation [c] followsd by a diagonal transformation [w] , Ths rows 

of ths matrix [0] ars sigenveetors of ths covariancs matrix [u] of the 

sst of vsctors, and the elsnsnts of [w]are thoss givsn In Equation 2.22b, 

where ff" i" th« standard deviation of the coefficients of the set of 

vectors in the direction of the p  eigenvector of JuJ • 

The proof of the above theorem is readily obtained as follows. 

Proof 

Expanding the square of Equation 2,23 and substituting the 

values of w  results in Equation 2.2h which is to be minimized over all 
nn 

choices of the coordinate system. 
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7 t^i^tP' cm        pn 'naTpii' 

W-lJl   «^j, nn    % n        n        W-li ^ nn       n 

(2.2U) 

(2.2lib) 

■Tinl/J^-T^T-fj-p2] l/N 
(2.2lic) 

Let th» givon coordinate syarteoi be transfonsed by the matrix [Cj  . 

[cj. 
CU 012 '•• C1N 
c21 022 ••• C2N 

CN1 CN2 ••• 0NN 

, where   Xc^,    ■ 1     for p-l, 2,  ..., N, 
n-l r 

(2.25) 

Equation 2*2li is inlnlaized if the bracketed expresoion In Equation 2.2tic 

la minimized.   The latter may be named i3 and written as belou. 

^ P"l   H      p"l /      m-l r n«!       r   j 
(2.26a) 

where 

f      = >    f     c    . (2.26b) 

Subatituting Hjuatlon 2,26b into 2.26a, we obtain Equation 2,27,  where 

the areraglng is underatood to be over the set  of M vectors. 

p-I / n-l a-1 
fee '   ~mn ma pn ps -(i f'vj_ (2.27) 
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Tha squared expreaalon may be vrltten'aa a double sun and the entire equation 

fllcplifled to 2.28. 

^ tM (f" fa * fnfs) cpn cpa- (2.28) 

^  ^n'a " Vs^- ^n» " u8n   ^ ^ olenent of the covariance matrix fö] , 

Hanoe 

Using the method of Lagrango multipliers to minimize ß in 

Bjuation 2.29, subject to the constraint of Equation 2.25, we obtain 

Equation 2.30 below as tha total differential of/3 .   The differential 

of the constraint, f , ia given in Equation 2.31, 

dy • 2 2 c09
dcoB ' 

0*      for i" !» 2»   •••» N. 
g-1 >fg   ^g 

(2.30) 

(2.31) 

In the way of an explanation of Equation 2,30, it is seen that when Equation 

2.29 is differentiated with respect to c.    , then all the factors in the 

product in Equation 2.29, where p /^ , are simply constantl,    Canying out 

the differentiation stated in Equation 2,30, we obtain 

/ 
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|j^^u"Vp.j 0. (2.32)       ' 

Lot c c     ■ Ätäslw*' '• (2.33) 

Koto that since p /^, A*   la just a constant as regards optiwlnation of 

In accordance with the nothed of Lsgrange r;ultiplier3> each of the 

!! constraints of Equation 2.?1 is railtipliod by a different arbitrary constant 

Bß   and is added to dß as shovm below. 

d^+ i Y$ - *'$,$?% (S^BbK+Bic^. - o.       (2.3J4) 

^jr letting - /\< ■ B/ /Ay and l^r recognizing that dc-  is arbitrary, we 

get 
t 

Z   ^bugb - A^ - 0,  for g-1, ?, ..., N andi-1, 2, ..., N. (2.35) 

•th 
Let the ^  row of the [cl matrix be the vector Cy , Then the above 

equation may be written as the eigenvalue problem of Equation 2.36 ty 

recalling that u , ■ u. , 

c^fu-^l]- 0,  for X= 1, 2, ..., N. (2.36) 
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Solutions of aquation 2.36 exist only for N specific values of A/. 
o 

The vector Z.   is an eigenvector of the covariance matrix [üj,   The eigen- 

values   A. are positive and the corresponding eigenvectors are orthogonal 

since the matrix [Uj is positive definite.   Since the transfomation   fcl 

is to be non>singulary the different rows C« must correspond to different 

eigenvalues of [ UJ .    It nay be shewn that the only extrerun ot/ß is a 

ninimm, subject to the constraint of Equation 2.25.   Thus the optlnura linear 

transfomation which ninimizes the rcan-square distance of a set of vectors 

••hlle keeping the volume of the space constant is given by Equation 2,3?, 

vhere rows of [cl are eigenvectors of the covariance matrix [ül. 

: 

• 

a:L1a12...a1N 

a2l'22,,,m2N 

•M*^' ..a NN 

Tr 
C11C12,,,C1N 
C21C22,,,C2N 

CNlCJffi,,,cNN 

w, 11 w, 22 

w IIN 

iicii w22c2i ••• Wia 
vmfm W11C12 M22C22 

W11C1N W22C2N • • • W, N^NN 
(2.3?) 

The numerical value of the minimum mean-square distance may now 
T be computed as follows.   The quantity D   was given in Equation 2,2l4C which 

is reproduced here as Equation 2.38. 

n2 m     M  9H ft''1^ f    I      " #IT ^-f^1^- 1 (2.38) 

3^ 
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Substituting/3 from Equation 2,29, "e obtain Equation 2.?9« 

7 ft.3» 

But fron Equation 2.35 ve see that nin D   may be written as below, vhere 
■ 

the constraint 2,2$ has also been utilized. 

«I» ,D2 ■ ^ 2N 
[p-l n^j ^P Cpn 

l/\\ 

Wü^f^f' (2.1,0) 

It should bo noted that the constraint of Bauation 2.?5 is not, 

in general, a constant volume constraint. It is that only if the 

transfomation [cj is orthogonal, as is the case in the solution Just 

obtained. The set of transformations which keeps the volume constant is 

T^ in Figure 5. A subset of these are the orthogonal transformations T 

of constant volume, of which the optimum was desired« The solution presented 

here found the optimum transformation among a set of T, which contains 

orthogonal transfomations of constant volume but is not necessarily constant 

volume for those which are non-orthogonal. The solution here given, 

therefore. Is optimum among the constant volume transformations T D T 
v   L 

shown shaded in Figure 5, This intersection is a larger set of trans- 

formations than that for which the optimum was sought. 

Figure 5, Sets of Transformations 
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The röthoda of this chapter are optlnal in meäeuring menbership 

In categories of certain types.   Suppose, for Instance, that categories are 

statistically independent randct: processes vhich geMrate nffisbers 'dth raulti- 

variate Gaussian probability distributions of unloaovin nesna and variances« 

Elsevt.ere it is sh^vn that the natrlc developed 3Hsra pwasures contours of 

equal a posteriori probabilitier.   Given ^he set of labeled events, the netric 

specifies the locus of points »hich are rjQrtbcrs of the category in question 

with equal probability» 

Before bringing this chapter to a conclusion, the inportant 

concepts introduced hare 'Jill bo sumarlsed. 

Categorization, the basic probIon of pattern recognition, is 

regarded as the process of learning how to partition the signal space into 

regions where each contains points of only one category.   The notion of 

sircilarity between a point and a set cf noints of a category plays a doninant 

role in the partitioning of signal space.    Sirdlarity of a point to a set of 

points is regarded as the avorace "distance" between the point and the set. 

The sense in vhich distance is understood is not specified, but the optimum 

sense is thought to be that which (by the optimum nethod of reasuring distance) 

clusters most highly those points which belong to the same category.   The mean- 

square distance betveen points of a category is a measure of clustering.    An 

equivalent alternate interpretation of sinilarity  (not as reneral as the inter- 

pretation above) is that the transfer-.aticn vhich optinally clusters like points, 

subject to suitable criteria to assure the non-triviality of the transTormations, 

is instrumental in exhibiting the ninilarities between points of a set.    In 

particular, the optimum orthogonal transformation and hence a non-Euclidean 

method of measuring distance is found which minimizes the mean-square distance 

between a set of points,  if the volume of the space is held constant to assure 
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non-triviality.   The resulting oaasure of alnilarity between a point P 

and a set fF?is given in aquation 2,hi, whore a     is given the Theoren 
t W "S 

of this chapter. 

*»' W 1 K 

3-1 
sA-W ] (2.hl) 

To facilitate the instrumentation of conputations of the function S, a 

typifying exanple B of the set is developed which sets an upper bound on 

the necessary infonnation storage at 2N, nunbers, where N is the nuriber 

of disensions of the space in which the points are represented. 
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3. CATEGORIZATION 

3.1 The Proceu of Clgggificatioo 

Pattern recognition consists of the twofold task of "learning", 

on one hand, «mat the category or clasa is to which a set of events belongs, 

and of deciding, on the other hand, whether a new event belongs to the 

category or not.  In this chapter details of the method of aeeoaplishing 

these two parts of the task are discussed, subject to the linitations on 

recognizable categories imposed by the assumptions stated earlier. 

In the following section two distinct modes of operation of the 

recognition system will be distinguished.  The first of these consists of 

the sequential introduction of a set of events, each labeled according to 

the category to which it belongs.  During this period, identification of the 

common pattern of the inputs which allow their classification into their 

respective categories is desired.  As part of the process of learning to 

categorise, the estimate of what the category is must also be updated to 

include each new event as it is introduced.  The process of updating the 

estimate of the common pattern consists of recomputing the new measures of 

similarity and the typifying examples of the sets so that these will include 

the new, labeled event on which the above quantities are based. 

During the second mode of operation the event P to be classified 

is compared to each of the sets of labeled events by the measure of simi- 

larity found beat for each set.  The event is then classified as a member 

of that category to which it is most similar. 

It is not possible to state with certainty that the pattern has been 

successfully learned or recognized from a set of its.examples, because 

38 

UNCLASSIFIED 



UNCLASSIFIED 

iofoxMiioo is not available on how exaoples were selected to represent the 

class.     NeTertbeless. it is possible to obtain a qualitative indication 

of how certain we ■»>• be of having obtained a correct aethod of detcraioing 

neabecship in the category froa the ensenble of sioilar events.     As each new 

event is introduced, its siailarity to the oeabers of the sets already pre- 

sented is aeasured by the function S defined in the preceding chapter.     The 

nagnitude of the nuaber S indicates how close the new event is to those 

already introduced.     As S is refined  and, with each new exanple inproves 

its ability to recognize the class,   the mmcrical measure of siailarity 

between new examples and the class will tend to decrease,   on the average. 

Strictly speaking, of course,  this last statement cannot be true in general. 

It nay be true only if the categories  to be distinguished are separable by 
i 

functions S taken froa the class which we have considered;  even under this 

condition the statement is true only if certain assumptions are made re- 

garding the statistical distribution of the samples on which we learn.      Since 

we have no a priori knowledge regarding the satisfaction of either of these 

two requirements, the convergence of the similarity as the  sample size is 

increased is simply qualitative wishful thinking whose heuristic justifi- 

cation is based on the minimization problem solved in developing S. 

Figure 6 illustrates the mechanization of the learning and  recogni- 

tion nodes of the special classificatory process discussed so far.     For the 

sake of clarity, the elementary block diagram of the process is shown to 

distinguish only between two categories of events,  but it  can be extended 

readily to distinguish between an arbitrary number of categories.      It should 

be noted that one of the categories may be the complement  of all others. 
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The admission of such a cateßory into the set is one of the ways in which 

a nachinc which is always forced to classify events into known categozies 

nay be nade to decide that an event does «ot belong to any of the desired 

ones;     it belongs to the category of "everything else".   Sanples of "every- 

thing else" nust.  of course, be given. 

l-J 

DEVELOP 
METRIC  FOR 

(U ) COMPUTE 

DEVELOP 
METRIC FOR I 

I 
I 
I 
4 

dB( ) 

DEVELOP 
SA(PI 

©-rl 
COMPUTE 

SBIP.^B) 
DEVELOP 

EB 
SB(P)| 

Pigure 6.    Ulencntary Block Diajran; of tlic Classification I'roccss 

Durin- the  first node of  operation,   the  input  to the machine is a 

set of   labeled events.      Let us  follow its   behavior through an example.    Sup- 

pose that a nunber  of events,   some belonjinj to set A and sone to sot B,  have 

already been  introduced.    According  to  the  nethod described in the previous 

chapter,   therefore,   the optimum metrics  (one for each class)  have b'.'en found 

which niinimize  the mean-square distance between events of the same set. 

Similarly, the best exemplars of the sets have also been found.      As a new 

labeled event  is  introduced  (say,   it belongs to set A),  the switch at the 

input is first turned to the recognition mode R so that the new event P may be 
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compared to set A as well as to set B through the functions 

SA(P) » S(P, JA \)  ■ SA(P.B ) and SB(P) which were conputed before the intro- 

duction of P.  The conparison of SA - SD with a threshold K indicates whether 

the point P would be classified correctly or incorrectly fron knowledge a- 

vailable up to the present. The input switch is then turned to A so that P, 

which indeed belongs to A. nay be included in the coctputation of the best 

no trie and exemplar of set A. 

When the next labeled event is introduced (let us say it belongs to 

set B), the input switch is again turned to R to test the ability of the 

machine to classify the new event correctly.  After the test, the switch 

is turned to B so that the event may be included among the exaaples of set 

B and the optimum function S_ nay be reconputcd.  This procedure is repeat- 
D 

ed for each new event, and a record is kept of the rate at which incorrect 

classifications vnuld be made on the known events.  When the training period 

is completed, presumably as a result of satisfactory performance on the se- 

lection of known events, the input switch is left in the recognition mode. 

3.2 Learning 

"Supervised learning" takes place in the interval of tine in which 

examples of the categories generate ensembles of points from which the de- 

fining features of the classes are obtained by methods previously discussed. 

"Supervision" is provided by an outside source such as a human who elects to 

teach the recognition of pattern by examples, and who selects the examples 

on which to learn. 

"Unsuperviscd learning", by contrast, is a method of learning without 

the aid of such an outside source.  It is clear, at least intuitively, that 
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the unsuperviaed learning of nenbership in specific classes cannot succeed 

unless it is preceded by a period of supervision, during which sooe concepts 

regarding the characteristics ot classes are established.     A specified degree 

of certainty concerning tbe patterns has been achieved in the font of a suf- 

ficiently low rate of aisclassification during the supervised learning 

period.     The achieveneot of the low nisclassification rate, in fact, can 

be used to signify the end of the learning period, after which the system 

which perforns the operations indicated in Figure 6 nay be left to its own 

devices.      It is only after this supervised interval of tine that the systen 

may be usefully employed to recognize, without outside aid, events as be- 

longing to one or another of the categories. 

Throughout the period of learning on examples, each example is in- 

cluded in its proper set of similar events which influence the changes of the 

measures of similarity.      After supervised activity has ceased,  events intro- 

duced for classification may belong to any of the categories;      and no outside 

source informs the nachine of the correct category.      The machine itself, 

operating on each new event,  however,  can determine,  with the already quali- 

tatively specified probability of error,  to which class the event should 

belong.      If the new event is included in the set exemplifying this class, 

the function measuring membership in the category has been altered.      Un- 

supervised learning results from the successive alterations of the metrics, 

brought about by the inclusion of events into the sets of labeled events 

according to determination of class membership rendered by the machine itself. 

This learning process is instrumented by the dotted line in Figure 6 which, 
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when the leaxnine «witch L ia closed, allows the «»chine•» decision« to 

control routin« of the input to the various sets. 

To  facilitate the illustration o^ sone iaplications of the process 

described above, consider the case in »Aich recognition of aeabersbip ia a 

«inßle class is desired and all the labeled events are nenbers of only that 

class.  In this case, classification of events as menbers or oomenbers of 

the category degenerates into the conparison of the sioilarity S with a 

threahold T.  If s is greater than T. the event is a ootnenber; if S is 

less than T, on the other hand, the event is said to be a menber of the class. 

Since the machine decides that all points of the signal space for which S is 

less than T are »eabers of the class, the latter, as far as the nachine is 

concerned, is the collection of points which lie in a given region in the 

signal space.  For the specific function S of the previous chapter, this 
t 

region is an ellipsoid in the N-dinensional space. 

Utwupcrvised learring is graphically illustrated in Figure 7.    The 

two-dinensional ellipse drawn with a solid line signifies the donain D   of 

the signal space in which any point yields S<ZT.      This domain was obtained 

during «upervised activity.      If a point P1 is introduced after supervised 

learning, so that P1 lies outside ^ then P1 is merely rejected as a non- 

member of the class.      If point P2 contained in ^ is introduced, however, 

it is Judged a »ember of the class and is included in the set of examples 

to generate a new function S and a new domain D2,  designated by the dotted 

line in Figure 7.      A third point P3 which was a nonmember before the intro- 

duction of P2 becomes recognized as member of the class after the inclusion 

of P2 in the set. of similar events. 

^3 
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Pigute 7. Ohaupetvised Learning 

Although the tendency of thi. process of "learning" i. to perpetuate 

the original donain. it haa interesting properties worth investigating.  The 

investigation of unsupervised learning would for« the basis for a valuable 

continuation of the work presented herein. 

Before leaving the subject of unsupervised learning, it should be 

pointed out that a» the new domain D2 is formed, points such as P4 in 

Figure 7 become excluded from the class.  Such an exclusion from the 

cUss it analogous to -forgetting" because of lack of repetition. Forget- 

ting if the characteristic of not recognizing P4 as a member of the class. 

whereas at one tine it was recognized to belong to it. 

3.3  Xhl,eahold Settiiag 

In the classification of an event P the mean-square distance between 

P and members of each of the categories is computed.  The distance between 

P and members of a category C is what we called "similarity". SC(P). where 

the "sense" in which "distance" is understood depends on the particular cate- 

gory in question.  We then stated that, in a manner analogous to decisions 
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based on naximm likelihood ratios, the point P is classified as a aenber of 

the category to which it is nost sinilar.  Hence. P belongs to category C if 

SC(P)^SX(P), »here X is any of the other categories. 

Since in this special theory the function SC(P) which Measures 

nesbership in category C. was developed by ■axinally clustering points of C 

without separating then fron points of other sets, there is no guarantee, 

in general, that a point of another set B nay not be closer to C than to B. 

This is guaranteed only if points of the sets satisfy certain conditions which 

will be stated below.  A graphical illustration which clarifies the com- 

parison of similarities of a point to the different categories is shown in 

Figure 8.  In this figure the elliptical contours S (P), S (P). etc., 
Al    A2 

indicate the loci of points P in the signal space which are at a mean-square 

distance of 1, 2,...,etc., fron nenbers of category A. The loci of these 

po.ints are concentric ellipsoids in tJic N-diraensional signal space, shown 

here in only two dimensions.  Similarly, S (P), S (P)  etc.. and 
12. 

^C   ' ^C ^••••» etc., are the loci of those points whose mean-square 
1     2 

distance from categories D and C, respectively, are 1. 2 etc.  Note 

carefully that the sense in which distance is measured to each of the cate- 
* 

gories differs as is indicated by the different orientations and eccentrici- 

ties of the ellipses. * 

^5 
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Figure 8.  Categorization 

The heavy line shows the loci of points which are at equal mean-square 

distances to two or more sets according to the manner in which distance is 

measured to each set.  This line, therefore, defines the boundary of each of 

the categories. 

At this point in the discussion it would be helpful to digress fron 

the subject of thresholds and dispel some misconceptions which Figure 8 

might create regarding the general nature of the categories found with the 

method described herein.  It will be recalled that one o'f the possible 

1+6 
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«ays in which a point not belonging to eithex category could be so claasif led 

was by allowit^ a separate category for "everything else" and assigning the 

point to the category to which its aean-square distance is smallest.     Another, 

perhaps more practical, nethod is to call a point a aeaber of neither category 

if its aeaa-square distance to the set of points of any class exceeds soae 

threshold value.      If this threshold value is set.  for exaaple,   at a aean- 

square distance of 3 for all of the categories in Figure 8.  then points 

belonging to A, B, and C will lie inside the three ellipses shown in Figure 9. 

Figure 9.    Categorization with Threshold 

It is readily tseen,  of course,  that there is no particular reason why 

one given ninimum mean-square distance should be selected instead of another; 

or,  for that matter,  that this ninimum distance be the sane for all cate- 

gories.      Many logical and useful criteria may be selected for determining the 

optimum threshold setting.       Here,  only one criterion  will be singled out as 
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particularly useful.  This criterion requires th«t the ninim» thresholds 

be set so that cost of the libeled points fall into the correct category. 

This is a fuiida«ental criterion, for it requires the syste« to be designed to 

work best by naking the largest number of correct decisions. 

The criterion of selecting a threshold to take the «ost correct 

classifications nay be applied to our earlier discussion where the boundary 

between categories was deternined by equating the siailarities of a point 

to two or «ore categories.  In the particular e»nple of Figure 6. where a 

point could be a menber of only one of two categories A and D, the difference 

S - S» 0 forned the dividing line.  There is nothing nagical about the 
A  B 

threshold zero; one night require that the dividing line between the two 

categories be S - S ■ K, where K is a constant chosen from other considera- 

tions.  A similar problem in communication theory is the choice of a 

signal-to-noise ratio ^hich serves as the dividing line between calling the 

received waveform "signal" or calling it "noise".  It is understood, of 

course, that signal-to-noise ratio is an appropriate criterion on which to 

base decisions (at least in some cases), but the particular value of the ratio 

'to be used as a threshold level must be determined from additional require- 

ments. In communication theory these are usually requirements on the false 

alarm or false dismissal rates.  In the problem of choosing the constant K, 

we may require that it be selected so that most of the labeled points lie 

in the correct category. 

3.4 Practical Considerations 

In considering the instrumentation of the process of categorization 

W 
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previously described, two min objectives of the «uchine design wist receive 

careful consideration.  The first of these is the prscticsl tequireaent that 

all coaputations involved in either the learniof or the recognition «ode of 

the ■achine*s operation be perfomed as rapidly as possible.  It is es- 

pecially desirable that the classification or recognition of a new event be 

iapleaented in essentially real tine.  The importance of this requixeaent 

is readily appreciated if the classif icatory technique is considered in teras 

of an application such as the autocatic recognition of speech events, an in- 

portant part of voice controlled phonetic typewriters.  The second aajor 

objective, not unrelated to the first, is that the storage capacity required 

of the aachine have an upper bound, thus assuring that the machine is of 

finite and predeterained size.  At first glance it seens that the instrumenta- 

tion of the machine of Figure 6 requires a storage capacity proportional to the 

number of events encountered during the machine's experience. This seems so 

because the set of labeled events on which the computations are carried out 

must be stored in the machine.  It will be shown in this section, however, 

that all computations may be performed from knowledge of only certain sta- 

tistics of the set of labeled events, and that these statistics may be re- 

computed to include a new event without knowledge of the original set. 

Therefore, it is necessary to store only these statistics, the number of 

which is independent of the number of points in the set. 

It will be recalled that there are two instances where knowledge of 

the data matrix is necessary.  The data matrix [F], given in Equation 3.1, 

is the M x N matrix of coefficients which results when the M given examples 

of the same category are represented as N-dimensional vectors. 

I 1 
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fU f12 ' * ' flN 

f21 f22 * ' * f2N 

fMl fM2 
• • • fi MN 

(3.1) 

The first use of this natrix occurs in the computation of the 

optimun orthogonal transformation or metric which minimises the mean-square 

distance of the set of like events.  This transformation is stated in the 

Theorem in Section 2.4 and is given in Equation 2.37 as the product of an 

orthonormal and diagonal transformation.  Rows of the orthonormal trans- 

formation jcj are eigenvectors of the covariance matrix fu] computed fron 

the data matrix of Equation 3.1, and elements of the diagonal matrix [NJ sre 

' the reciprocal standard deviations of the data matrix after it has been 

transformed by the orthonormal transformation [c\ • 

The second use of the matrix fFj occurs when an unclassified event P 

is compared to the set by measuring the mean-square distance between P and 

points of the set after both the point and the set have been transformed. 

This latter comparison is replaced by the measurement of the distance between 

the transformed point P and a "typical example" of the set. as stated by 

Bquation 2.19.  The quantities of interest in this computation, as seen 

from Bquation 2.21, are the mean, the mean-square, and the standard deviation 

of the elements in the columns of the data matrix after the orthonormal 

transformation. 
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— 

Reduction of the necessary storage facility of the nscbine nay be 

accoaplisbed if only the covariance caatrix. the «eans. the ■eao-squacea, and 

the standard deviations of the transfomed data natrix are used in the coaputa- 

tiom, and if these nay be reconputed without reference to the original data 

natrix.  The expression of the above quantities when based on M*l events 

nay be conputed fron the corresponding quantity based on M events and a 

conplete knowledge of the M*lst event itself.  The nethod of the conputa- 

tions is described below. 

(1) The covariance natrix of M*l events. 

The general coefficient of the covariance natrix Ql] of the set of 

events given by the data natrix [rjis given in Equation 3.2 

(3.2) u  > u 
ns  sn 

rr -TT 
n s   r s 

Note,  incidentally,  that the natrix [uja&y be written as in Equation 3.3. 

where the matrix [jl has been introduced for convenience.      As a check,  let 

us compute the general element u ns 

T. 

[»MM M (3.3a) 

where  Jjj 

V2 . . T% 

f 1 f 2 . . . f N 

r, r . . . r 
12 nj 

(3.3b) 

The nth column of the [jF -j] matrix, which becomes the n  row of its 

transpose, is given in Equation 3.4 as well as the s  column of |F - J| 
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The product is the covariancc matrix coefficient u ns 

ns 

ns 

R[(V^.(y^VyfMn-^] 

M *£ ym     tf   yns     sj n s    n a 

• 

v T   . 
s 

{u- V 
fMs- f. ; 

(3.4) 

(3.5) 

Now to conpute the covariancc based on M-»l events. un8(M+l), 

it is convenient to store the N means ^ for all values of n.  It is also 

convenient to store the N(N*l)/2 independent values of f f .   Both of n s 

these quantities nay be updated readily as a new event is introduced. The nean 

M*l 
T" based on M+l events may be obtained from the nean based on only M 
n Mfl 

events, f . fron Equation 3.6a and f f    nay be obtained from Equation 3.6b. 
n n s 

r n 
M*I  M r* ♦ fu, „ n   M>l,n 

M*l 

M 
  M*l  M TT ♦ f.. . „ f.. , „ m  m  n_s   M*l,n M-*-l,s 
n s M*l 

(3.6a) 

(3.6b) 

Here, the superscript of the ensemble average indicates the number of events 

partaking in the averaging, and fM    is the n  coefficient of the M+lst 

event.   We now have everything necessary to conpute the new covariancc 

coefficients. The storage facility required thus far is N(N'*3)/2+l locations. 

The +1 is used for storing the number M.  If the covariancc matrix is also 

2 
stored, the necessary nunber of storage locations is (N+l) ;  this makes use 

of the fact that both [u] and [F Fj are synmctric matrices. 
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Froo the natrix \\JJ the orthonornal t.rar.sfor=aatloa fc] twy be found 

by solving the eigenvalue problcn [c~*Ju -Xl}» 0.      The natcix fcl has to 

be «tored,     lequirlnß an addltioral :c* storage locations. 

(2)    Mean of the ?** colimn of the [l*] [cj   « fp'J  . 

As stated earliec.  one of the quantities of interest in the typifying 

example is  the nean of the  elenenta   in a colurji of the data natrix after its 

orthonornal transforaation with [cj  .      The jencral elenent of the fpO 

matrix is f*      given in üquation ?..a6b jnJ in  3.7a.  and its nean is given 

in Equation 3.7b). 

f» r;p z ran    pn 

P    ' ^   ^1    ^Tl     fnn Cpr.   "    t-,     n Cpn 

N 

n=l 

(3.7a) 

(3.7b) 

•-- 

f i 

Ko additional storajc is required to  coiaputo   f  •.    since all the factors of 
P 

Equation 3.7b arc already known.      An  additional H locations raust be made 

available to store the H ncans,  however, 

(3)     Mean-square of  p     colunn of , V'J   . 

The mean-square value of clenoits of the pth colunn of FFO 

is given in Equation 3.8a and b. 

M 

mssl 

N N 

M M        N 

ILL 
ra=l     n=l    s=l 

2 12 1     — 
P     '   M   2_    fiJp     '     M   2-     A.     Z_   fnn fnsCpn Cps    (3.8a) 

nsl    s=l 
s     pn    ps (3.8b) 
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No additional storage is necessary for this conputation. An additional . 

2 
N locations, however, nust be available to store f^ . 

(A)    Standard deviation of the p* colann of \i:,J. 

The only renaining quantity necessary in the instrunentation of the 

recognition systen is the reciprocal standard deviation of the p  colunn 

of jp«) , as stated in the thcorcn of Chapter 2. The standard deviation and 

the elenents of the diagonal natrix [tf] arc siver. by Equation 3.9. where all 

the quantities arc already known. An .idditioral :: locations are needed to 

store their values, however. 

W ^-Ir- ■    1 (3.9) 
PP   Cr P 

The total nunber of storage locations is 2>l   *  5N'*1 for each of the 

categories to which events nay bclonj..  If the nunber of cxanples fl of a 

category is less than the number of üinensions N of the space in which they 

2 
are represented, the required nunber of storage locations is only 2M + S'l*l. 

In order to utilize this further reduction of storage and computational time, 

however, the M events nust be recxpressed in a new coordinate system obtained 

through the Schmidt ojrthogonalization of the set of M vectors representing 
■ 

the examples of the set.   In the h^innin^ of the learning process, when the 

number of labeled events is very much smaller than the number of dimensions 

of the space, the saving achieved by Schmidt orthogonalization is very sig- 

nificant. 

5^ 
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A practical rerork worthy of oention is that at tbe beginning 

of the learning procew, when M i» lew than j;, the «olution of tbe eigen- 

value probleo |u - xi] ■ 0 oay be greatly sinplif ied by recognition of the 

fact that [üj1» »iagui" i( M<N«  Although it i« not iwwdUtely obvious, 

nevertheless, it is true that the non-«ero eigenvalues of ftljin Equation 

T 
3.3a are identical to the eigenvalues of the natrix (F - J/'l? - J; as 

stated below. 

T T 
Kon-xero eigenvalues of (P - J) (F-j) ■ eigenvalues of .'F - JKF - J*  (3.10) 

The first of the natriccs Is an N x N, while the second is an H x M oatrix. 

There are N^l zero eigenvalues of the first natrixj the cooputational ad- 

vantage of working with the second natrix for MO" is therefore significant. 

A few additional raaarks should be nadc about the nature of the solution 

obtained with the two constraints of Equations 2.12b and 2.13 .  It should be 

noted, first of all, that if the nunber of point.» in a set is equal to or less 

than the nunber of dinensions in which they arc expressed, then a hyperplane of one 

less dimensions can always be passed through the points.  Along any direction 

orthogonal to this hyperplane, the projections of points of the set F are equal. 

Along such a direction, therefore, the variance of the given points is zero, 

leading to a zero eigenvalue of the covariance matrix.   This results in call- 

ing the corresponding eigenvector (the direction about which the variance is 

zero), an "all important" feature.  The feature weighting coefficient Wn is 

thus unity or infinity, depending on which of the above two constraints were 

applied. If the second or constant volume constraint were used, each point of 

the set F used in learning would be correctly identified, and its distance to 
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the set P would be zero by the optlnon nctri;-.     At the sar» tiae the netric 

classifies each point of another category C as a nonnenber of F.       A new 

nenber of category F, on the other hanü, .«ould probably be raisclassified, since 

it is unlihcly that the new nentcr of F rf^jU <».»v? eractly the 3ane projection 

alon^; the eigenvector as the other nenfceri lv»d ttiiplayeJ.        Tliis niscla^^ifi- 

cation would not occur if the nur.ber of exanple.* of tt? category P cr:codcd 

the mtnber of dinensions ii> which    they .;ori  caressed.       There ar; 

several nethods to prevent nisclassificirior.;      for cxanple.  if the first 

constraint were applied, nisclassificoüon r.f nenters of F v>t>uld not occur. 

Another  fact of some inportance uliic-. should be brought to the 

reader's attention is the physical significance of the eigenvectors.    The 

vector with the smallest eisenvalue or largest feature weighting coefficient 

designates that feature of nenbers of +:i<   jet  ig which the nenbers arc most 

sinilar.      This  is not equivalent to the fealurr which is nost similar to 

menbers of the set.      The former is a soljtiori c( a problem in which we wish 

to find a direction along which the projß. tions of the set on the average, 

arc most nearly the same.      The second  ;.«  a solution of  a problcn v.'«vt" «i» wish 

to find the direction along which the projections of  tlw set arc largest,  on 

the average. The desired direction,   in the first eise,  is tho eigen- 

vector of the covariance matrix with •••lie ■innliest eigenvalue;       in the second 

case,   it is the eigenvector of the correlation matrix JF F jwith the largest 

eigenvalue.      It can be shov/n that the latter problem is equivalent to find- 

ing the set of  orthonormal functions  in whi^n a process is  to be expanded so 

that the truncation error,  which results when only a finite number of terms 

of the expansion are retained, should be minimized,  on the average.      The set 
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of.functions bavins this property are eigenfunctions of the correlation 

function of the process, and tbey are arranged in the order of decreasing 

eigenvalues« 

The iaoertsat eonceots of this chaoter will now be snaiarixed. 

Pattern recognition consists of the twofold ttslr of •"learning", oa the eae 

hand, whst the cstegory is to «hich a set of erents belongs; and of deciding    ' 

on the other hand, whether a new erent belongs to the category or not. 

"Learning", for the sinple situation where siailarity to a class of things 

is deterwined solely fron exawples of the class, aay be instruaented in the 

for« of the diagra« of Fijure 6.    In this diagrui "learning" consists of the 

construction of Metrics or the develvpnent of linear transfornations which 

■axiaize the clusterli^ of points which represent siailar events.    A distinc- 

tion is aade between "supervised learning" (learning on known exaaples of 

the class) and "unsuoervised learning" (learning through use of the aachine's 

own experience).    In this connection it is stated that the convergence of a 

•   learning process to cocrect category recognition,  in «ost cases, probably 

cannot be ©isranteed.    The problen of threshold setting for partitioning the 

signal space is likened to the similar oroblen in the detection of noisy 

signals,  and aay be solved as an extrenua problea.    Finally,  some practical 
« 

considerations of inportance in the mechanization of the decision process 

are discussed. It is shown that only finite storage capacity is required of 

the machine which instruments the techniques, and that the amount of storage 

has an upper bound which depends on the number of dimensions of the signal 

space. 
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h.    DECISIW THEORETICAL BASIS OF CATEGORIZATION TCCHNIQUES 

Tr.e categorization techniques outlined in the preceding sections 

do not involve assunjptions about the probability distributions of the 

respective categories.    It is instructive, however, to consider the relation 

of these tachniques to the conventional decision-theoretical approach to 

problems of categorization.    In the latter it is assumed that probability 

density functions for each category are known.   Given such functions, it 
o 

Is possible to set up optlnun procedures for categorization.      It will be 

shown that under certain conditions the criteria developed in this report 

are exactly those prescribed by decision theory .when the distributions are 

known.    The important fact that should be kept in mind is that the categori- 

zation techniques discussed in earlier sections do not require knowledge 
* 

of the density functions. They provide procedures of categorization where 

there is no knowledge of such distributions. 

The purpose of this section Is to provide a corroboration of the 

techniques and to lay bare their relation to decision theory proper. 

That such a corroboration should occur so fortuitously after the development 

of the techniques is gratifying in that it gives support from a well- 

established mathematical theory. 

In order to set dovn the relation between the categorization 

techniques of earlier chapters and decision theory, it will be necessary to 

state briefly some of the assumptions and results of the latter. These 

results will be stated without proof since their full exposition may be found 

in any text on decision theory. 
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For purpoaea of expoaltion, two categories vill b« treat«d. 

OenerallzaUon to K categoriea proceed» In a natural way, but tends to 

obacure the eaaential aiwpllclty of the theory.   Aasuwe, then, that ther« 

«re two categories to which it ia desired to aasign objects as yet un- 

categorlted.   The only direct knowledge available about a specific object is 

a set of n neaaurements made upon it.   Purtherrsore, a probability density 

function for each cateogry is known such that» when integrated over a 

region A of the n-diroenaional space spanned by the n meaaureusent», it 

yields the probability that an object from a given cateogry will produce 

measurements falling in region A.    That is, the probability that an object 

from category CJ  is accompanied by n rwasurements that fall in A is given by 

\ 
P^x) dx 

where p1(x) is the probability density function for cateogry Cj^ and x 

represents the vector  (x^, X2,  .•.. x ). 

Let it also be assumed that a priori probabilities «^ and "g» 

are knovn which give the probability of occurrence of an object from 

C1 and C?, respectively.    The decision theory approach involves dividing 

the n-dimensional space into two regions, R^ and i^,  such that when a set 

of measurements falls in R-^ the object is assigned to C1 and,  similarly, 

when the measurements fall in Rg,  the object is assigned to C^. 

If the a priori probabilities and the density functions are known, 

then these regions may be chosen in such a way that    the expected cost of 

making decisiona ia minimized.    Here, it is assumed that there is a cost 

connected with making a miaclassification.    A division of n-dimensional space 
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Into two regions a1 and R2 is called a decision procedure.    The expected 

cost may be vritten 

E(K) - itj K21     \     p^x) dx ♦ »i2K12 (       p2(x) dx, (U.l) 

H h 
where K-i is the cost of misc lasst tying an object from C^j and K12> that of 

nisclassi^ing an object fron C2.    The first tern of Equation (!ul) is the 

expected cost due to miaclassitylng objects fron C^.    Since pjCx)  is the 

density function for C1, its integration over R2 (the region where the 

procedure specifies that the object be assigned to C^) gives this expected 

cost.    A similar statement nay be made for the second tern of Equation (li.l). 

Hence (h.l) gives the total expected cost. 

It is desired to choose the regions R^ and R2 that minimize Equation 

(U.l).    To determine these regions,, we rewrite Equation (U.l) in the 

following nanner. 

E(K) )   1*1 hi P1(x) - n2 }{12 p2(x) ] ^ + \n; 2 K12 p2(x) dx      (U.2) 

The last tern of Equation (U.2) is a positive number. Consequently, 

Equation (U.2) is made snaller by choosing the region R2 so that it contains 

all (and only) those points x*such that 

"l K21 PlM " TT2K12 P2(x^ ^0' 

Thus, R^ must be the region of points which satisfy 

nl K21 pl(x) " V2  Ki2 P2(x) ^•0- 

(U.3) 

<U.U) 
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Another way of writing Equatlona (li.3) «nd (U.li) i» 

Pyx) ^ ^2 

R2. 

P2 

PoCx) 

(U.$) 

(U.6) 

Th» optimum decision procedure when a priori probabilities, 

^ and n2, and denalty functions are known is given by Equations (U.$) and 

(U.6). That ie, given a set of neasurenents x the object represented ty x 

is assigned to C1 or C2 depending on whether x satisfies inequality (*.5) or 

(U.6). 

Unfortunately, the a priori probability of occurrence of en object 

from a specified set is seldom known. In lieu of these probabilities there 

•re procedures which permit determination of the regions R1 and R2. Thus, 

one might assume the a priori probabilities to be equal. This is known 

as a TÜwdmum likelihood criterion. Another criterion is to minimiie the 

meximum probability of misolassificatlon. This Is the "minimax" criterion. 

It is obtained by choosing the regions in such a manner that the expected 

cost of misclassifying an object from C1 Is equal to that of misclasslfying 

an object from C2, i.e., 

h2 3       P2< S      \       p,(x)   i- - K2:L \    p1(x) dx, 

Ri R2 

We next oonslder x distributed normally   with mean ^ and»co- 

varlance ^ when it is t member of 03., and mean ii2 and covariance \J? when 
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n 

a.?) 

a.8) 

/ 

It l« a member of Cg.   Tliat is, Pjix) in given by 

Pi(x) ■ (^% i^oxp - 7(x * ui)y1 (x ■ *i)l 

««i P2(x), by 

The regions IL and R2 as given by Equations (li.5) and (ii.6) are 

B ,    PjU) _ (Ugj       exp   - i (x-u) UT1 (x-uJ 4 i (x-M UZ1 (x^k n2K12 

R,, Pl^) .    |U2|1/2 exp - i   (^K1 ^) * I (x^) U-1 (x-^^Vlg 

Pl(x) 
Since the logarithrdc function is monotonically Increasing, the ratio X) / \  may 

be replaced by its logarithm, i.e., 

luJ ^ 
^s log 

172 

1/2 

1 I (x-Hi) U1  (x-^) - (x-Ug) U2  (x-u2) J >log -jpjp (U.9) 

R2t log I 2I   - I [(x-^) Uf1 (x-^) - (x.n2) U^
1 (x-n2)J<log ^^ (U.10) 

N 
It vill now be shown that the regions expressed in inequalities (U.9) and 

(U.IO) are the same as those developed in the preceding sections for the 

categorization of unlabeled objects. First, let it be noted that 
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A3 Ul V -Ai 

vhere ^ is the natrlx the rows of which are the eigenvectors of U^ and /^ 

Is the diagonal natrlx of eigenvalues.    Then 

and 

v1 • s'V H 
Likewise, when A- and/lp are the ratrlces o.'" eiirenvectora and eigenvalues of U^, 

^2*    " ^2 ^2'    A2 * 

Henco. 

- 7 fx-^) U^1 U-u^' (x-u2) U^1 (x-u^'J 

■ '  7 [(x-Mi) Ai' ^'S (^i^ - ^-u?) \-,A2'1A:' (X-U2) J 

- -    I Ux Ai'- ^A^Af^x Aj'- Vi')'.  (x Aj'- H2A2
1)A2":i(x A.,1- u^1)J . 

It has been shown in the preceding sections that the transformation 

which minimizes the mean-square distance cf the first category when vclume is 

held invariant is given by 

y-xA1
,A1-1/2. (La2) 

Similarly, the transformation that minimizes the mean-square distance 

of the second category is 

y-xA^A^2. (U.13) 

63 

UNCLASSIFIED 



n 

.- 

u 

UNCLASSIFIED 

TJ» fonotion, as prtacribwi by th» t«ohniq»8 nentioned in thi« import, that 

ntasuns th« »ImUwitjr of a point x*, a« jit «ncataforliad, to tha oataiory 

C, la tha »wn-aquara diatanoa, aftar tranaformatlon, of tha unlabalad  point 

to tha polnta of oatafo«7 V   **» «aan-aqpara diatanoa ay ba wrlttan 

vhora tha a.«a ara tha algamraetora of ^ and tha ^'s ara tha aiginTaluaa 

of Aj. 

Ukawlaa the maan-aquare distanee of x   to the points of C2 la 

given bj 

vhere the b^a «re the eigenvectors and the ^'s are the» elgenvaluea 

of A«. 

The decision procedure whereby the point x   is asslpjed to C^ or 

C? consists of observing whether 

D^x*,^)    ^-D2^)    C2>K (üaö) 

or 

where K is a number choaan to satisfy some criterion, (e.g., minimitatlon 

of the false dlemlaaal rate). 

It will ba shown that the regions defined by (I4.I6) and (li.17) ara 
a 

tha svna, except for additive oonatanta, as those defined by (lu9).»nd (1^,10). 

6^ 
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'* first observe that 

(Ii.18) • 11 &"S -' A,l ^ * ^] • 
vher» the averaging takes place over the category C«, 

Next, observe that the variance of the rotated coordinates xaV 

is given by the eigenvalue Xj^   That is, 

2 
Adding and subtracting H^   «Lthin the brackets of (ii.18). and enploylng (lj.19), 

ve obtain • 

" n +   ^ ^ (X*a,i " ^)-2' (l4,20) 

Similarly, the mean-square distance of x* to the points of C9 may be written 

01.19) 

where the averaging takes place over the points of C9. 

If we denote the vectw) the conroonents of which are the means 

of the components of the category C1 by M^and the corresponding vector 

for C2 ty Hg, then the regions'   {h.16) and (lj.17) may be rewltten as 

Cli.a) 
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ih.lu) 

(l4.l7t) 

Hb iwxt obaenr« that 

(x#A'l A f ?   - ^'l Al" ' ) ^A,l V WiV 7)' 

(x* - i^) A'x V1 A1(X* ' ^l^ 04.22) 

and 
n 

^L (xV, - ^b^)2 (x* - I^M^Ag"1 A2(x# - j^)' 0».23) 

It h*a been obeei^ed tbore that 
„ -1        . .      A    -1 A-, Af1 *! 

and 

U-^-ASA  "1 

(li.l6b) 

(lj.l7b) 

Hence, the reglona (h.l6a) and (h.lTa) may be written 

(x# - n^UfV - ^)' - (x* - ^)U2'1(X# '^Z* 

(x# - ^ofV - ^il)
, - (x* - üg^-V - ^l2), < ^ 

Theie region» are the aana as thoae of 01.9) and^.10) when the conetant 

terra K 1B olwaen properly. Varloua oholces of K reflect the criterion 

enplojed in the deolslon procedure. Some of these have been mentioned above 

(e.g., maximum likelihood, mlnlmax). 
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The correspondence of the two decision procedures is quite Informative. 

In order to arrive at the decision theory solution, it vas necessary to know «the 

density functions of the categories. Knowledge of the a priori probabilities, 

although not indlspensible, was an essential part of the reasoning. The 

techniques presented in this contract allow a procedure when neither of these 

factors is known. 

6? 
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5.    aTflSOKIZATION BY SBHUUHIOW OP OASSBS 

5.1   0|>ti«i»*tiog CriterU 

Tlie central concept of the specUl theory of •{■ilarity described 

In the precedinc chapters is that nonidentlcal events of a coraon category 

■ay be considered close by soiie aethod of neasuring distance.    This Measure 

of distance is placed In" evidence by that transfomation of the signal space 

which brings together like events by clustering then »oat.    In this special 

theory no serious sttenpt has been nade  to assure that the netrics which were 

developed should separate events of different categories. 

The purpose of this chapter  is to introduce criteria for developing 

optirun aetrica and transformations which not only cluster events of the sane 

class tutiiao separate those which belong to different classes.    Consider, 

for exaaplf,   the  transforeation which naxinizes the mean-square distance 

between points which belong to different  classes while it minimizes the 

mean-square distance between points of the same class.    The effect of such a 

transformation is illustrated  in Figure 10 where like events have been 

clustered through ninlnlzation of intraset distances and clusters have been 

separated from each other through the naximiration of interset distances. 

The transformation which accomplishes the stated objectives can be specified 

by the following problems. 

Problew 1 

Find the transformation T within a specified class of transformations 

which mRimizes the mean-square interset distance subject to the constraint 

that the sun of the naan-iquare interset and intraset distances  is held constant. 

68 

UNCLASSIFIED 



UNCLASSIFIED 

B 
® 
A»*» 

Figure KX Separation of Classes 

Note that for the sake of siaplifying the mathenatics, the wini- 

tsization of intraset distances was converted to a constraint on the «aximiza- 

tion problen. If interact distances are aaxinised, and the sua of inter and 

intraset distances is constant, then it follows that intraset distances are 

■inieized. We may impose the additional constraint that the mean-square 

intraset distance of each class is equal, thereby avoiding the possible 

preferential treatment of one class over another. Without the latter constraint 

the situation indicated with dotted lines in Figure 10 say occur where rainini- 

zation of the sun of intraset distances may leave one set more clustered than 

the other. 

The above criterion of optimization is given as an illustrative 

example of how one may convert the desirable objective of separation of 

classes to a mathematically expressible and solvable problen. Several alter- 

nate ways of stating the desired objectives as well as choosing the constraints 

are possible. For example, the mean-square intraset distance could be 
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aininized while holding the interact distance! constant. 

The optiaiiation criterion Just diicuased suggests a different block 

diagram fox the process of categorisation than that shoMt( In Figure 6. Here 

only a single trsnsforsation is developed, resulting in only a single wetric 

with which to «»sure distance to all of the classes. The clsssification of 

an event P is accomplished, as before, by noting to which of the classes the 

event is rost sinllsr. The only difference is that now sinilsrity to each 

class is nessured In the same sense, in the sense exhibited by the trans- 

formation which Baximslly separated events of different categories, on the 

average. 

ttdtla 2 
A second, even wore interesting criterion for optima categorisation 

is the optiwization of the classificatory decision on the labeled events. 

Classificatcry decisions are ultimately based on ceap^ring the siailarity S 

(mean-square distance) of the event P *ith the known events of esch clsss. 
* 

If P is chosen as any «icmber of Class A, for exaaple, we would like that 

SIP./A \\* si?, IB Vi, on  the average, where fB^ is the set of known members 

of any other Class B. Similarly, if P is any nenber of B, then 

sjp.lfl 1) x SIP,[A 1). The two desirable requirements are conveniently 

combined in the statement of the following problem. 

Find the metric or transformation of a given class of transformations 

which maximizes s(p,(Bn]] - s|p, |A }|, on the average, if P belongs to 

Category A, while requiring that the average of 51?,^) - s|p,jBn^jfor any 

P contained in Category B is a positive constant. The constraint of this 
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pUbl« uniM tb« «I «ir poMt of C.t.c«tT A »»« •»» the« of B an 

cUMifled correctly, on the average. 

It ia i«portant to note that the abote proble« ia not aiaed at «aai- 

.Uing the mmb« of correct deciaiona.    Inatead it Mkea the correct deciaiooa 

.oat unequlwcal. on the average.    It ia subatantially «ore difficult to 

»axi-Ue the nuaber of correct cUaalflcationa.   Por that porpoae a binary 

function «ould hate to be defined -hlch asaunea the mote poaitive of ita two 

valuea whenever a deciaion la correct and, conversely, asaunea the lower 

value for incorrect clasaiflcatlons.   The suw of this binary function evaluated 

for each labeled point would have to be »axlalxed.   This proble« does not lend 

itself to ready analytical solution;  It «ay be handled, however, by computer 

■ethoda. 

5.2   A Separating TransforwatIon 

The particular linear transformation which eaalalzes the «ean-square 

Interset distance while holding the sur of the wean-square Inter and Intraset 

distances constant  is developed below.    Recall that the purpose of this  trans- 

•    formation is to separate events of dissimilar categories while clustering 

those which belong to the same class. 

The mean-square distance between the M1 members of the set JFn| and 

the M2 members of the set [Gp^. after their linear transformation,  is given 

in Equation 3.1, where fns and gps are the •sth coefficients of the m*    and 

P
th members of the sets jW and JG^, respectively.    Por the sake of notatlonal 

simplicity this mean-square jfllgififit distance Is denoted by s((Pw^,  [G^|   and 

*   The symmetrical situation where S|P7JX^]  - S|P,^| for PeB is also 

maximized leads to the same solution. 
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is the quantity to be Mxlaiied by « suitable choice of the linear trana- 

fotsation.   tht choice of the notation above is intended to aigniff that the 

transforMtion to be found ia a function of the two set«. 

M1   M. 

slfcL for        '    *" 
1        2      N M W^ 

nml p.l n.l L«-l J 

The conttraint that the nean-squaH distance 9 between points 

regardless of the set to which they belong is a constant,  is expressed by 

Equation 3.2, where fis the coefficient of any point belonging to the 
(M 4M I 

l
2 

2I, andM -M^. 

MM      N   r  N 
e 

«      M       N    r N V 

^III   I-~(Ä.^J 
n>l p«l nrl LSBI J 

■ constant K. (5.2) 

: 

Both of the above equations nay be simplified by expanding    the 

squares as double suns and interchanging the order of sunnatiens.    Carrying 

out the  indicated operations,  we obtain Bguations 5.3 and 5.A. 

where 

N      N      N 

%:!■ H\ • 111-n. -, nr V» 
n=l  s=l r»l 

M1    H2 

Xsr " xr5 M^ Z   L  (fms "VIIM  "gPrl; 

nrl   pel 

(5.3a) 

(5.3b) 
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and 

N     N     N 

• • E r L "• ~nr 
Oml »ml   tml 

•r        ' <i.4l) 

where 

N     M 

».r * Ss ^ZTln,. -^1(^-^1 
ami   pal 

(3.4b) 

The coefficient x8r is the general elenent of the mtrix [x] which is of the 

Com of a covariance natrix and arises fron considerations of cross-set 

distances.    The «atrix [T] with general coefficient t    , on the other hand, 

arises fron considerations involving disunces between the total ntmber of 

points of all sets. 

We now rosxinize Equation 5.3,  subject  to the constraint of 

Bquation 5.4a by the method of.lagrange multipliers.    Since dw   -is arbitrary 
ns 

. 
in Equation 5.5, Equation 5.6 must be satisfied. 

dS - Xdd r 

N      N pN 

I   Idwns  I  V(xsr  -Xtsrl 
nd srl Lr=l 

= 0 (5.5) 

*•   L V|xsr " Xt5rl  " 0'   for n«l.2..--.N; 8-1.2 N. (5.^ 
r.l 
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Bquatlon 5.6 ray be written in Mtrlx notation to exhibit the 

solution in an Uluninatiwi my.    If we let "„ be a weetor with N conpooent* 

w , ... w       then Bqu»t iow 5.6 nay be writlea as in Equation 5.7a, ni nN 

w1[x - XT] • 0 

»*N[X-XT].O 

(5.7a) 

By posi-oultipiying both »ides of the equation by T~ , we obtain aquation (5.7b) 

which is in  the forn of an eigenvalue probten. 

W, XT      - XI 
-1 XT XI 

• 0 

• 0 
(5.7b) 

"NK1 " XI]  • 0 

Note,  that T      always exists since T is positive definite.   * Squat ions 5.7a and b 

nay be satisfied  in either ot  two ways.     Either W  ,   the n      row of the 

linear transformation described by  the natrix   [wj,   is identically zero, or it 

is an eigenvector  of the mUtrixj XT-    .    We nust substitute  back  into the 

mean-square   inter set distance given by Equation 5,3a   to find  the solution which 

raaxifliizes S.    To facilitate this substitution, we recognize that through 

matrix notation aquations 5.3a and 5.4a may be written as Equations 5.8 and 

5.9, respectively. 
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ami 
(9,9) 

E-.W < • K. (5.9) 
n-1 

Bot fro« BguttloB S.7« M tee that WnX M7 «Imfs be repUced by M»^. 

Carrying out thli subatitution in 3.8, we obtain equation 3.10. where the 

constraint of 5.9 la also utilized. 

N 

n-l 

It is now apparent that the largest eigenvalue of [x - Xl] - 0 yields the rows 

of the transfornation w^eli aasinises the «ean-square inter set distance 

subject to the constraint that the oean-square value of aU distances is a 

constant. The transforaation ia atated by ftjuation 5.11, where 

"l " ^ll' "ia» •'•••W1N " eiienvector corresponding to X 

[,), 
12 '•' W1N w11w 

WH w12 *'" W1N 

W   W        w 
11 W12 '•' "iNj 

(5.11) 

The iranaforwation of the equation above ia singular, expressing the 

fact that the projection of the pointa along the line of maximum mean-aquare 
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Interset distance and ninimun intraset distance is the only inportant feature 

of events that determines their class nenbership. This is illustrated in 

Figure U.^here line aa* is in the direction of the ilrst eigenvector of the 

natrix Ixr" J. A point of unknown classification is grouped in Category B 

because the aean-square difference between its projection on line aa* and the 

projection of points belonging to set B, sjp, [B|), is less than SJP, [*l], 

the corresponding difference with nenbers of set A. 

sOOT) 
S(P,{&)) 

Figure U  A Singular Class-Separating Transformation 

Forcing the separating transformation to be non-singular is possible 

by the imposition of a different constraint on the maximization. Unfortu- 

nately, the mathematical difficulty of imposing non-singularity directly is a 

formidable task. In general it requires evaluating a determinant, sue;: us the 

viraiuan, anil assuring that it does not vanish.  In the following discussion, 

at first a seemingly meaningless constraint will be imposed on the maximization 

of the mean-square interset distance. After the solution is obtained, it 

7« 
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Mill be shown that the neaningless constraint can be coafcrtcd to a constraint 

which holds the nean-s^uare of all distances constant—the sane constraint 

we used previously. 

The nesn-square interset distance to be naxinised is given by 

Bquatlon 5,3» which is reproduced here as Bquation 5.12. 

N  N  N 

n*l aal r«l 

The constraint we will iapose is that the nean-square length of the projections 

of all distances between any pair of points onto the directions tf   be fixed. n 

but in general, different constants. TMs constraint is expressed by 

Bquation 5.13 which differs fron the previously used constraint of Iquation 5.4 

only by fixing coordinate by coordinate the aean-square value of all possible 

distances between,points. 

N  N 

I Iwns V »sr ' V for n-1'2 N- (3-13) 

8-1 ral 

Assigning an arbitrary constant X to the differential of each of the above 

N constraints snd using the method of Lagrsnge aultipliers in the naxinization 

of S above, Bquation 5.14 is obtained. 

dS 

N N      N j- N * -I 

I Xn ^n ' I   Z dJ Z V|V " ^'srl    ' 0- C514: 

nal n.l s«l Lr-1 J 
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tfhcn we rake vse of the convenient mtrix notation employed earlier, we 

obtain Oquation 5.13 which differs significantly fron Equation 5.7», despite 

the sinilar appearance of the two equations. 

I1]-0 I - V 
(5.15) 

^-v] 
The solution of aquation 3.13 state« that each row of the linear transforaation, 

■wnt, is a different eigenvector of the fx T*1] natrix. The transforaation [w] 

is therefore orthogonal. Equation 5.16 is a further constraint which converts 

that of 3.13 to holding the nean-square of all distances constant, and thus 

accomplishes the aim of this section. 

N 

Iv (5.16) 

n.l 

Note that before we knew that the rows of the transfornation jwj 

would be orthogonal, the condition expressed by Equation 3.16 does not fix the 

total distances. .The above procedure resulted in finding the non-singular 

orthogonal transformation which optimally separates the classes and optimally 

clusters members of the sane class. 

We will now compute the mean-square interset distance S of 

Equation 3.12. To facilitate the computation, S will be written in matrix 

notation as in Equation 3.17. 

... 
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When we rake «se of the convenient tutrlx notation enployed earlier, w 

obtain liquation 5.15 which differs sisnificantly fro« Equation 5.7a, despite 

the siailar appearance of the two equation«. 

' 

•il« - v] • 
(5.15) 

The solution of Equation 5.15 state« that each row of the linear transforaation, 

Wnt, is a different eigenvector of the [l T*
1] natrix. The trans for«ation [HJ 

is therefore orthogonal. Bquation 5.16 is a further constraint which converts 

that of S.15 to holding the nean-square of all distances constant, and tHus 

accomplishes the aim of this section. 

Iv (5.16) 

n«l 

"' 

Note that before we knew that the rows of the transfornation IMl 

would be orthogonal, the condition expressed by Bquation 3.16 does not fix the 

total distances. The above procedure resulted in finding the non-singular 

orthogonal transformation which optimally separates the classes and optimally 

clusters members of the sane class. 

We will now compute the mean-square interset distance S of 

Bquation 5.12. To facilitate the computation, S will be written in matrix 

notation as in Bquation S.17. 
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^ '      n.l 

(5U7) 

Ft«. Dquatlon 5.15 it it »een. ho-ever. that if S i. m*iwm,   V -Y ^ 

tepUeed -ith X^T to obtain Bquatlon 5.18. »there WT Hn . K,, 

nix 
n*l 

(5.1«) 

fro« aquation 5.13 (in «trlx notation).    Bquation 5.19 i. th«. obtained. 

It la now readily seen, with reference to Ration 5.10. that the upper bound 

on the -ean-quare interaet distance Is achieved by the singular tranafcr-^lon 

discussed earlier, and *f pay for forcing the transformation to be non-.lngular 

'by achieving only a reduced separability of classes. 

nal 

Before leaving the discussion of Clasa-separating tran8for»atlons, 

a few i«portant  facts must be pointed out.    A pimple formal repUcement of 

the matrices X tnd T by other suitably chosen matrices yields the solution of 

nany  interesting and useful problems.    It  is not the purpose of the  following 

remarks to catalog the problems solved by the formal solution previously 

obtained; yet some deserve mention because of their importance.    It may be 

readily verified,   for instance, that replacing T by I is equivalent to 

maximizing the between-set distances,  subject to the condition that the volume 
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of the .p.« i. . ....ft.   IU. trMf.«..l« -ic« .««»"•»" tkta 1. 

o,tl»8on.l .111. .«. ««".1 «» "»"•«"« el,"«etot. .f th. -trlx I.   BO. 

„, of „.h.,«..l dlreeli... .1«. *»* l«t"«t dl.t«.«. «. «i^.«". 

„ ... .«.H.. * fir.« -a* «.u in«.««, »b. «»« i. «" .•."« «•. 

Figure   11. 
Aaother repUcewnt «hlch «.t We.lcfled out U the .ub.tltutloo 

of the itrix t for T. -here L I. the cc^rUnee ~trlx ...ocUted with .11 

i„tr..et dl.t^.i (dlttwc. wong m tmH^   **<"**<>" ** [X ' H 

re» rair. of th« trantfor-tion which M.l.iw. l"ter.et dl.Unce. «hile 

holding intr..et di.t.nce. con.taot.   Ibl. proble. i. em-tially the »»e 

.s the «.xl-iftion of lnter.et dl.Unce. -hile holding the «.. of Inter Wd 

intr.set di.tance. con.t.ntt yet the relative .ep.r.tion of sets .chieved by      # 

the tt» tr«isfor«.tlons I. different.   The difference -.y be exhibited by 

computing the r.tio of the w-U™ »ep.r.tlon of .et. to the -ean cluster- 

i„g of elects «Ithin the .we set. as «e.sured by the «.n-square Intr.set 

distance.    It may be concluded,  therefore.    th.t the constraint e^loyed in 

the Baxln.lzatlon of lnter.et dlst.nces doe. have an Influence on the degree 

of separation achieved between set.. 

Throughout this chapter the cla..-separating transformations were 

developed by reference to the existence of only two sets.  [P^ and [^.    The 

result» obtained by these methods .re «ore gener.l. however, because they 

apply directly to the separation of an arbltr.ry nuBber of .et..    For In.tance. 

in the maximization of the mean-square inter.etdistance, there Is no reason 

why the matrix X should Involve Interset distances between only two sets.    An 
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.rbitr.ry nu.b.r of .et. my be involved, .nd the inter.et di.tance. .re .i.ply 

all tha.e di.t.nce. -e.wred bet-een two point, not in the urn wt.   Si«iUr 

.rguWent. .re valid for .11 the other ..trice, involved.   Ihe only precutloo 

th.t »ust be Uken concern, the po..ible u.e of ^ditioo.1 eoo.tr.lnt. .pecl- 

fyinf preferentUl or nonprefer.ntl.1 tr.a»eot of eU.M..   The.e «Jditioiul 

con.tr.int. my t.ke the for« of requiri«|. for In.tMce. that the nean- 

a^uare intrant di.tance of all set. be equal or be related to each other by 

aoae constant..   A.ide fro. these -Inor «tter.. the result, apply to the 

separation of any nu.ber of classes. 

• 
5.3    M^iBitatiop «f Correct ^^"sifications 

The correct classification of points of the set F are rfade .ore 

unequivocal by the linear transformtion which Mke. any event Fn of wfF 

•ore si.llar to .e.bers of F. on the averaie. than to those of another set G. 

One of the ways in -hich the average unequlvocalness of correct classificatory 

decisions «ay be stated ■athenatically Is to require that a nu.erical value 

associated with the quality of a decision be aaxi.ized. on the average.    Of 

the several quantitative neasures of the quality of a decision which «ay be 

defined, one that readily lends itself to «athematical treatment is siven in 

Bquation 5.20.    The difference in the similarity between a point P and each of 

the two sets, P and 0,  is a quantity Q which is larger  if the decision regarding 

the classification of P is .ore unequivocal. 

slF'Wl"5KpÄl ^ 
(5.20) 
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Since decisions in previous chapters were based on the conparison of Q with 

a sultahle threshold value (such as zero), «e now wlah to find that linear 

transfomation which «axinizes 0» on the average, whenever Q ia to be positive* 

If P is a nenber of the set P. then P is closer to P than to C and thus Q 

is to be positive.   The «axinitttion of Q for PcP result« in Mxiaiting the 

■argin with which correct decisions sre Mde, on the average.   The foregoing 

naxiitizatlon ia stated in Bquation S.21 aubject to the constraint expressed 

by Bquation S.22.    The latter sioply states that if P«C, the average decision ia 

atill correct,  as neaaured by the Mrgln >* 

5(v (s)) - 4"-W) ■' ■ naxinuw, subject to (5.21) 

'M'-D-'Mvi) ■ K ■ constant > 0. (5.22) 

Utilising previously obtained results,  the above equations are 

readily aolved for the optiaun linear transforaation.    Rewriting the firat tern 

of Bquation 5.21, we note that it expresses the aean-square interset distsnee 
t 

between sets P and 0 and way be written as in Bquetion 5.23, where Bquation 

5.1 and the sinplifying notation of 5.3 are eap>loyed. 

M1   Mj   » r  N 

mal pal  n»l     S«l 

♦Maximization of Q ** haa the same aolution. 

(5.23a) 

UNCLASSIFIED 
et 



r 
UNCLASSIFIED 

N     N     N 

III 
n«l •■! tmi 

S(Pn' {G
0])     * I   I I  "n. V •t • 

(3.23b) 

TM tteeoil Uxm of Bqottlon 5.21 U the «ean-tquare intrutt dlstuec of «et P 

and My be expressed •• in BQottlon 5.24.   The axpMent of the cowiMce 

coefficient uar(P) slfnlfits thet it is • eworUnce of elcMOtt of the »et P. 

-1   Ml   " 

iv^D-KW'W)-i*SSS •-i 

(5.240) 

N      N      N 

•('.■ {'.])  ■ ?r 111 v ^ l       nmi ami r-l 

«       M       U.  (P). ns   nr   or 
(5.24b) 

SiailarlT.  the flret tern of Equation 5.22 Is the ■esnrsqusze interset distsnee. 

and the second tem Is the intraset'distance of set G.   The nsxiBizstion 

proble« can thus be restated by Equation 5.25s and b. 

N     N      N 

Maxinize Q " V   V   Y" 

n«l s«l r'l 

w      w ns    nr 

2M. 

«sr * —1 Usr(I,) (5.25a) 

N      N      N 

subject to K ■ y y y w . w ns    nr 
.       n»l 8=1 r»l 

2M2 x      - rj-Sr u. (G) sr     Mg-l   sr 
(5.25b) 

Following the methods used earlier,  the solution of the above problem may be 

written down by inspection. 
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dQ - ;4K I Z "•»•[r v[v -i^ v(« - Hv '^"•«"^J   "•'" 

Prow 5.26 It follows that Squat ion 3.27« nust hold, whereof   Md fi   are 

given by Equation« 5.27b and c. 

N 

Z-  Vl«« '^J   m0'  for  n-1.2»...,N and •■l.a K (5.27a) 
tml 

st       st 
a*. 
H$Ust™ (5.27b) 

A st        St fi^L usr(6> (5.27c) 

By reference to earlier result«, «uch m« those expressed by Bquation 5.6, 

the transformation whose coefficient« wos satisfy an equation of the form 

above,  ia the solution of the eigenvalue problen of Bquation 5.28, where W 

is« row of the matrix expressing the linear t ran» format ion. 

W. 

0 

0 

-      "     •      •      •      •      t      I 

wN[oC- tf] - 0 
(5.28) 

Analogous  to the arguments used in the previous section, the above solution 

yields a singular transformation.    Forcing the transformation to be hon- 

( 

en 
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•ingultr, in the nanner already outlined, results in the optiaun transfonstion 

as an orthogonal transfonMion, where each row of the natrix [H] is an eigen- 

vector of [<<- ifjm o.    Airtheraore. it is readily shorn that the solution so 

obtained indeed naxUises Q. 

It is interesting to note that the Mxlnlsation of the average 

correct classifications can be considered as the naxlnisation of the difference 

between inter and intrsatt distances.   This alternate statenent of the problcn 

My be exhibited by the addition of Iquatien 5.Mb to 5.33a 

N N 

'♦'•Ell 
n«l s«l räl 

w  w 
ns nr [^r-{^%r<P)*I^Sr4J ' 0 39) 

.. But the expression within the braces is sinply the covariance / associated 

with all iotraset distances. Since K is a constant, the naxinizatioo of 

Equation 3.29 is equivalent to the naxinization of Q. 

In sunning up the results of this .chapter, it is seen that the problem 

of learning to measure similarity to events of a common category, while profiting 

frcn knowledge of nonmeobers of the sane category, may be treated as a maximi- 

zation or minimization problem. A metric or a linear transformation is found 

from a class of metrics or transformations which solves nathenatical problems  • 

which express the desire'not only to clustei; events known to belong to 

the same category, but alfo to separate those which belong to different cate- 

gories. Within the restricted class of metrics or transformations considered 

in this chapter, the solutions are in the form of eigenvalue problems 

which emphasize features that examples of a category have in comnon, and which 

at the same time differ from features of other categories. 
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7.    COHCUJSICMS AW) RBCOWEMDATICBS 

The application of pattern recognition to missile detection and 

decoy diacriaination vaa investigated.   As a result of these investigations, 
■ 

a mathematical theory was developed to achieve the optimum conbination of 

measurable or computable target properties to achieve the separation of 

target types, based on their observable properties. The input to the theory 

is the set of discrimination techniques and useful target-signature para- 

meters. The theory operates on these inputs to determine their optimum 

method of combination and thus deleraine what the essential properties 

of targets are that allow their recognition. An important attribute of 

the theory is that it does not become' obsolete as new techniques are devel- 

oped and break-throughs are achieved in methods of distinguishing one type 

of target or threat from another. The achievement of the present theory is 

that it states how.techniques developed by others'sre .to be combined. 

The recommendation for further work, in part, is to develop the 

theory—which has thus far shown promising results — and to explore the 

already known avenues of research opened» up by current investigations under 

the present program. Simultaneously with further .theoretical developments, 

the already succesefully tested methods should be applied to actual missile 

data. Retailed recommendations have been outlined In a proposal, 

>   In the course of work performed during the present contractual 

effort, and as a result of the investigations carried out during this effort, 

certain facts relating to Ballistic Missile Defense, and in particular, to 

the problems of Missile Detection and Decoy Discrimination, became apparent. 

These facts are listed below and are substantiated In the body of this report. 
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a) It may be inferred from the results of the present study that 

present computers are entirely adequate in size and in speed of operation to 

handle the Job of Missile Detection and Decoy Discrimination in Ballistic 

Missile Defense. Neither the cosplexlty nor the number of calculations are 

outside the capabilities of presently available Computers. 

b) The instrumentation of the theoretical techniques developed 

during the present effort would serve a two-fold purpose. On the one hand, 

it is the working system with which missile detection and decoy discriaina- 

tlon could be carried out in the field: on the other hand, it would serve 

as a research tool with which both the usefulness of new sensors and recog- 

nltion techniques can be evaluated, and the direction of desirable further 

data collectioo»efforts pinpointed. 

c) It Is felt that'the system suggested in this report is both 

the final system which performs missile detection and decoy discrimination 

in the field, as well as the tool with which to discover how the Job is to 

be done and what the missile signatures are which permit discrimination 

between missiles and other targets. For this reason, it appears that, 

stemming from this dual use, the proposed system will accomplish a signi- 

ficant saving in the developmental time of a balllstic-mlsslle defense 

system. 

d) It is generally realized that no single measurable or compu- 

table parameter will be adequate to perform missile detection and decoy 

discrimination with sufficient reliability. It is believed that a combin- 

ation of techniques will be necessary to perform these tasks. While such 

notions are generally entertained, the precise method of combination of 

the various and basically different techniques remains unsolved. In this 
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report we can specify exactly how the different present and future techniques 

which ore useful In one situation or another can be cooblned to yield optimal 

dlscriclnatory decisions. Purthemore, the tsanner of cooblnatlon of techni- 

ques will not require tdteratlon either conceptually or In the hardware 

InstruDentatlon, if new and loproved techniques becose available. 

e) An laportani conclusion of the present study effort Is that the 

best utllizöticn of a cocabination of techniques In a single decision process 

is achieved only through the simultaneous collection of data. It is abso-   « 

lutely necessary that simultaneously collected neasureoents by all sensors 

und daUj processing systems be available If the optimum combination of tech- 

niques is to be found. 

f) Since H  technique of'data processing which utilizes the combin- 

ation of detection and discrimination techniques transcending several different 

kinds of primary sensors will be used, such a systea must face the problem of 

lack of uniformity of data storage. It is one of the conclusion» of the present 

study that uniformity of data storage should be a desirable objective from the 

very beginning, lest the problem take on insurmountable proportions later on. 

The requirement should be established to maintain adherence to a mutually 

satisfactory data storage format. 
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APPENDIX A 

The Solution of Bigewvlue ProMew» . 

The frequency with which eigenvalue problent occur in elAMificatory 

analysis and the difficulty with which they are solved warrants the careful 

exanlnation of the avallabte nethods of solution. The slowest link in the 

confutations involved in the i-roccss of Corning category nenberahlp neasuriog 

functions is the solution of eigenvalue problens. It takes a considtrable 

length of tine for even a fast computer to solve for the eigenvalues and vectors 

of a large matrix. This Units the speed with which the influence of a new 

event is felt on the recognition process. In order that nachine learning be 

carried out in essentially "real tine", it is necessary to search for a"physical 

phenomenon or a natural process which is the solution of an eigenvalue probloo. 

The  natural phtnonenon nust have enough controllable parameters to allow the 

settinj up of an arbitrary positive definite synnetric ratrix. The objective 

of this Appendix is to focus attention on the importance of finding such a 
4 

natural phenomenon and  to give an example which—ml though not completely general, 

as we shall sec,  nor a practical as some would  like—does demonstrate the 

feasibility of solving eigenvalue probletrs very rapidly. 

Consider the two-loop lossless network of Figure A-l which  is 

excited with   a voltage  source e^ at   its  Input.     Letting fie  complex frequency 

bt X and   the   reciprocal capacitance  fsusceptance)  values be  call:J S,   the 

loop equations of the network may be written as  In Equation A.l. 

- 
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Figure A-l.   Two-Loop LottlCM Network 

(A.l) 

• 

Multiplying both «ides of the equation by X and writing it in matrix notation, 

. we obtain Bquation A.2, where e and i are vector» of the voltage excitations 

in the loops snd locp eurresfs. respectively. 

The matrices 

«••«KM»)) 
jLj and IsJ are given in Squat ion A.3, 

w 
■ - 

"•u*« ■L12 

>[' >     > 

•hz hz'hi 

S  4S     -5 
U 12     12 

-S    S  ■*$ 
12    22 12 

(A.2) 

CA.3) 
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If tJic input it ihort-circuiteU and the vector .4 i« »ciw, «ujr noii-<ero euccvu. 

tlait (lows in the network milt do so at frequencies that satisff BQuatioo A.4, 

«here use is Mdc of the kaonidie that a lossless oetteotk Mist oscillate at 

pure iM|inaxy frequencies X ■ Jw. The resulting cquatloo is so eigenwUue 

pcobleti of the sane type encountered thtoughoBt in this veL|ne. 

[xaL ♦ c] - 0 . [c - U
2l| CA.4) 

The aatrix [L] is a completely arbitrary, synnetric, positive definite ratrix 

«hose coefficients each arc controlled by (at nost) two circuit elenents. 

The nstrix [c] is slso sywietric snd positiv? definite, but its elenents which 

are off the principal diagonal mjst be negative or »ero. This does not have 

to be the case In the [l] tsatrixfor a negative mitual Inductance Is quite 

realisable. Nute, however, that If the mitual capacitance I» short-circuited, 

and tue oth?r capacitors are nade equal (for convenience let then be unity), 

then the nstural frequencies of oscillation of the short-circuited network 

satisfy the  eigenvalue problem of Equation A.5. 

("H (A.5) 

Tlie ndst general two-loop network corresponding to this equation is shown in 

Fifture A-2, where a transformer replaces the mutual inductances, 

^ L
II}   }

L
W ij\ 

figure A-2.    Network Solution of an Eigenvalue  Prihlen 
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The elvenvalue. .re the «.»re. of the redbrocl «.tural friend*, 

of ccHUtion.   Co-ponent. of the elf^eetor eofrttpondi«« to * |i*e. 

elgen.4l«e are the «initude. of the loop curreot. *t the cor.e.pondln, 

frequency. 

Since lo..le.i networks c.nnot tre built In practice, let u. Inve.- 

tlgate the effect of lo.oe. In the n.^uork of Figure A-l.    If • ^n «.UUnce 

I. connected in «erlet ulth every inductwce «.ch that the frequency of 

filiation is «, -"V^J. -here .< i. the real part of the eootiinat.a of 

the poles of the net-orK. the error in using tlr d^^l   natural frequencies Wj 

in place of the und..ped frequencies «ay be calculated.   The percentsje error 

of determining the eigenvalue. I. given in Equation A.6.expre«ed in terms of 

the Q of the resonant circuits. 

100 
% error in eigenvalues •  -5      " 

(aqr - i 

(A. 6) 

Bven for a lo..y network h.ving a Q of 10. the error I. only 0.2». Me 

•ay thus draw the conclusion that network losses don't seriously affect the 

accuracy of the eigenvalues. 

The eigenvalues «ay be obtained by spectrun analysis of any of the 

loop currents. This is readily accomplished by feeding the voltage across any 

of the series resistances into a'tunable narro«-band filter whose tuning 

frequencies corresponding to peak outputs yield the eigenvalues. Tho 

corresponding eigenvector may be obtained by-sampling the output amplitudes 

. of synchronously t*«d narrow filters connected *o measure each loop current. 

The sawoles are taken when local peak outputs with tuning are observed. 
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The «ize of the n&trix solved by the preceding nethods nay be made 

arbitrarily large. The reader can readily verify that if the aatrix «hose 

eigenvalues and vectors «e wish to conpute is N « N, then the network topology 

has to consist of H nodes which are connected to each other and to ground by 

series IC networks ss illustrated by Figure A-3 for N* S. 

L«-        »If 

Figure A-3. Generalisation bf Bigenvalue Probleo 
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APPHtDIX B. ON' PATTERN RECOGKITIOB 

In this Appendix ve briefly outline a number of approaches to 

the subject which have been taken by other people.  There is a thread of 

similarity among all of them. Yet they all differ, and some widely, for 

they each ask their questions from.separate frames of reference. And as 

Susanne Langer and Sir Arthur Eddington have suggested — the way we aek 

a question determines or frames our answer. The ichthyologist who sets 

out to study the ocean life with a net having two Inch openings comes to 

the "remarkable" conclusion that there are no fish smaller than two inches. 

So too, each pattern recognition tfechnique Is limited. A model chosen to 

simulate the human nervous system is limited by the "designer's" under- 

standing of the nervous system and also by the fact that the biological 

syptem may not be the best one for the problem under examination. 

Pattern recognition is the examination and classification of an 

object as a member of one of a number of categories, rather than its unique 

Ideatlflcatlon. The recognition process is Information-destroying, and 

only the Invariant properties or chAracteristics of the pattern (or pat- 

terns) of interest convey significant information for classification. Of 

course, in order to perform a classification, it is necessary to know the 

pattern-characteristic properties. Perhaps these properties can be chosen .. 

through human ingenuity and study; and this, in fact, has been the basis 

for most character  recognition and speech recognition systems now in vogue. 

But the more basic approach to the problem attempts to develop a technique 

^   In the preceding sections of this report, methods are based on the 
doctoral thesis work of George Sebestyen. 
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yhß^ebiy supervised examination ol known samples of the various categories per- 

mits a computer tc "learn"' w5m the psnuaetera arc which are significant to 

each category. The approach taken in this report is of the latter type. 

Pattern recognition is closely related tc problem solving. Problem 

solving consists of exiimining a given set of elements and finding a member 
a 

of a subset hrvlng specifid properties, use is rn'ide of processes which find 

possible solutions, and of other processes which determine whether a pro- 

posed solution la In fnct £> solution. Ure is mnde of principles or devices 

called heuristic.;, whtch contribute to the simpliflection of the search for 

solutions. t 

The actual measure of the merit of any particular pattern recognl- • 

tion technique Is In the success of the declsluns. All objects to be classi- 

fled can be represented in o space — perhaps en n-dimenslonal vector space. 

If the objects can be associated with particular categories, then by de- 

finition there is B decision rule fperheps a rule defined on a point set) 

for perfectly classifying every object, given its location in the vector 

space (assuming no ncl-e, of cour.e) . The ' lerrnirg" ta'k ir> to find the 

decision rule from examlnaT.iori of a finite runber of known ex-'iinples. Clearly, 

the goal is a technique which ce'n firul n gcid declslor, rule rapidly as the 

number of samples is incrensed. ."ll of the technique;-, maK.e use of heuris- 

tics. These are nlds or constraints which limit the number of  solutions 

under consideratiort. These heuri'-tics are dor.en or. the basis of the de- 

signer's experience snd/or Lm..'girint,1nn  Trey could be suggested by a soph- 

isticated computer. Omen the hejrietics chosen* tend to degrade the tech- 

nique by hiding tre nee*-, bciutio'i;-  This i'imyiy  suggest«., *)\3V  s good 
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heuristic can be a big help vhereaa a poorly chosen one can eliminate the 

proper solutions altogether. The differences among the various techniques 

lie, therefore, in the manner in which each leads toward development (or 

discovery) of a decision rule. 

We have heard the term artificial intelligence. This is generally 

applied in study of machines which ore told how to learn, but not how, 

specifically, to perform a task. We might further note the subdivision in 

pattern recognition Into cases where the machine is told how to find what 

makes the objects of a particular category equivalent, and cases where the 

machine does not have this information. Thus we see that the class of pat- 

tern recognition techniques includes machines which are told Just how to 

identify objects (from given truth tables), machines which are supplied with 

helpful hints (heuristics) on hew to learn to classify objects, and machines 

which are told nothing and are allowed to organize theoselveö by trial-and- 

error and through supervised learning. In the extreme, of course, this 

latter type of machine has a greater hardship imposed upon It than does the 

learning human mind. 

Supervised learning consists in presenting known samples to the 

machine and telling it to which category the object belongs. This is made 

known to the machine through a process of reward-and-punishment. The super- 

visor naturally imposes his own notions on Just what constitutes the pattern. 

From examination of samples used in character recognition studies one imme- 

diately realizes that a particular letter is classed in a particular category 

only because the supervisor (in this case, perhaps the one who drew the 

character) chooses to classify this character in this manner. To any other 

human being this character mighz be confused with another or it might even be 

unintelligible. 
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Many researchers have approached the subject through study and sub- 

sequent attempted simulation of the human nervous system. Still other have 

felt that the bes-; approach Is to start fresh by attempting to devise a model 

to solve the problem directly, without recourse to biological Justifications. 

It is interesting to note thot the models developed from these markedly dif- 

ferent approaches have stron similarities with*each other. This could lead 

to the encouraging conclusior. that progress has been good since different 

approaches lead to similar solutions. More likely, however, the conclusions 

might be that human researchers are 'again caught in that common quagmire 

wherein they persist in asking their questions within the old framework, and 

then are surprised when they get the same old answers. The observer from the 

next dimension chuckles as he watches our dilemma. Just as did the three-dimen- 

sional visitor in the Flatland of Edwin Abbott. A completely new approach to 

the problem could be most refreshing, but of course its arrival is not now 

predictable. 

The bibliography at the end of this report can serve as a survey of 

pattern recognition. In reviewing the work done in pattern recognition let us 

first examine the studies of Newell, Simon, art Shaw, at Rand, on the processes 

of creative thinking and applications to a Logic Theorem Proving machine and 

a chess playing machine. Strictly speaking, the work is not called pattern 

recognition, but the ideas are interesting and are here presented in more than 

Just a passing manner. Creative activity is a special olass of problem-solving 

activity characterized by novelty, unconventlonality, perslatence, and. diffi- 

culty in problem formulation. The Logic Theorist (a computer program, and 

possibly a machine) attempts to prove theorms (handed to it) of the type 

found in Princlpla Mathematics, and in. proving the theorems It then conjectures 
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and proves new theorems on which the original proofs depend. 

Ve earlier defined problem solving and discussed the processes of 

generation of possible solutions and o<i deteraintjog whether a proposed solu- 

tion Is In fact a solution.    Apparently, for large difficult probleas, there 

nay be large correlation between creativity and use of trlal-and-error gen- 

erators. 

The Logic Theorist operates on only a restricted set of proofs, and 

tests these.    The restrictions are on the number of logic ejcpresslons, number 

of symbols in each expression,    and number of different kinds of symbols used. 

We may further restrict the algorithm by only considering sequences that are 

valid proofs — i.e., wiose initial expressions are axioms, and each of whose 

expressions is derived from prior ones by valid rules of inference.    How, one 

approach could be to generate first the shortest proofs, and then longer ones 

by applying the rules of Inference (in all possible ways) to the former 

(shorter) proofs.    This Is working forward.    Actually,  the Logic Tbeorlat 

works backwards.    The Logic Theorist generates proofs which contain the 

desired expression  (theorem) for  the final one,  and logical expressions 

(obtained from logical  inference)  for the preceding ones.    When a p'roof appears 

whose Initial expressions are theorems,  we have found the desired proof. 

We can  specify a solution by either specification by state deacriptlon 

0r by specification by process description.    For example,   in logic we can 

write out an expression in the usual way, or we can give a sequence of 

operations on the axioms (a proof) that will produce it. 

We earlier defined the term heuristic to denote a principle or device 

that reduces,  on the average,   the  search required to reach a solution.    Many 
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of the re^Lrietionä mentioned earlier are heuristics. Heuristics are processes 

to tselect correctly a very assail purt cf the  total problem—solving mate for 

exploration. Most heuristics tieper.tJ on a strategy thot modiries eubsecuent 

search oe a funciicn cf Lnfonration obtained in previous search. Note that 

algorithms are rwlproof heuristics. Jther heuristics are the following. In 

logic-proofs, apply an operator If this results in an expression which oorc 

closely resembles the final express!.r. than did the previous one. Another 

heuristic is to ;;et up sub-tasks. S graphic example of such problem factor- 

ization is shown In the case of a safe with a lock having 10 independent dials 

numbered from 00 -.o )9'    Handom twirling of dials would require, on the average, 

20 
1/2 x 10  trials to cpen the lock. If the lock is defective and '.nere is a 

faint click each time any dial is turned to Its correct setting, then on the 

average only 300 trials are required tc open 'i.e lock (50 trials for each dial), 

■«e might bisj note that insight" into the problem structure Is actually the 

acquisition cf un addlti r.^i heuristic. I*, may be of further interest tc 

observe here that our pre-processing jf data =;akes uee of many heuristics. 

These Ideas ;.-. thinking hove teen presented for their general inter- 

est in the field. Come specific pstte.-n recognition techniques follow. 
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Pandeeonlua- The sjdel 4' 5amJexaniux ^rlginoted by 0. Selfrldge consists 

of four stages of dencey  Tire first ^».age consiotts of data collection (and 

display) devices, the second of ccopuiational devices, the third of cognitive 

devices, and the fourth cf tt decision unit which selects the cognitive device 

having the largest autpiu  The cognitive devices are each associated with a 

particular cntegcry 'p'Uiern) in the classification probleo being solved. 

These latter devices e^ch ne^sure (in soce sense) the similarity between the 

particular petterr. tv-e cognitive device represents i«nd the as-yet-unclassiflcd 

input. Each cognitive device has an output proportional to the aoount of 

the aforementioned similarity. The unknown inputs are Introduced to the 

dato collection devices (through which the physical word Is represented), 

and on which the computational devices operate. These latter extract the 

various "features" of the psttern and give an output proportional to the 

amount of the respective features. Between each computstlonal device and 

each cognitive device there is a weighting network, the value (weighting) 

of which is determined during the process of supervised learning. The 

weightings emphasize the features most significant for each pattern, and 

the process of developing the weightings is known as ''feature weighting". 

The Pandemonium is progrcnmed to adjust its weighting to minimize the output 

of the approprlrte cognitive device. 

Perceptron. The Perceptron is a generic name for a family of pattern recog- 

nition machines (oringinclly proposed by Frank Rosenblatt) that operate on 

principles not unlike those believed used in the human brain. The percep- 

tron consists of sensory units, associative units (each one is an effect a 

variable memory unit in a large switchboard), and response units. There is 
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a response unit corresponding to each stimulus class (categoiy), and each 

gives an output proportloncl to the similarity between the pattern which it 

represents and the unknown Input. A decision device selects the largest 

output. The outputs of the response units are fed back to weighting networks, 

located between the associative units and the response units, in such a 

manner that the connections contributing to the correct output are strengthened 

and the connections contributing to incorrect outputs are Inhibited. As the 

stiaulli are sequentially applied to the sensory units (during the period of 

supervised learning), the weightings are readjusted until the Perceptron 

approaches ita  osymptotic learning capability. 

In elementary models of the Perceptron the connections are linear, 

and the associative units are simple discrete representations of a neuron. In 

more sophisticated models, the connections tcay be defined with non-linear 

functions, and the associative units have more complex properties. For example. 

In more advanced concepts of the Perceptron, the associative unit Itself ad- 

Juats its firing threshold and the value of its output in the course of the 

learning process. 

Other Related Approaches. The Perceptron and Pandemonium are among the models 

more widely known (by name) in this country. But there are other approaches 

which merit as much examination as these two. Several people In England 

have introduced their own models. Chapman proposes a model in which the 

memory cell has certain special properties. Everytlme a cell fires under 

stimulation it modifies the structure of the triggering cells differently 

from the passive ones, Uttley has done work on conditional probability 

computers and on methods of classification, following the study of the human 

nervous system. Models follow from this. Taylor has done similar work. 
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la this country, Matteon has studied the classification problem with a model 

In which he represents objects In an n-dlmenslonal binary space. He then 

divides the space Into category regions vltb a number of hyperplanes. The 

"learning" process consists In best locating the hyperplanes, that is, In 

finding the coefficients defining each plane. The evaluation Is made with 

logical networks. Simple models have been constructed. Stanford University 

is- looking at the problem with a similar viewpoint. 

NerVe Nets.  McCulloch and Pitts have approached the problem by concentrating 

thplr efforts on development of a model for a neuron. They then study the 

properties of the different (nerve) nets which can be synthesized with these 

neuron models. Whereas some people begin with s system, perhaps resembling 

the biological model, and try to learn the requirements for its structure, 

McCulloch and Pitts start with the basic element and study its applications 

in large systems. They have directed their more recent efforts to further 

refinement of the basic nerve model. 

Character and Speech Recognition. Most studies of character and speech 

repognition have not included real learning techniques, but have rather 

depended upon looking for particular features in a pattern as suggested by 

the ingenuity of the engineer. Mattson and Rosenblatt have appl.ed their 

techniques to character recognition, and other work is being done at Staniford 

Research Institute, Lincoln Labs, Bell Telephone Labs, and at other organ- 

izations. One procedure which appears to be widespread is the following': 

the character is quantized in its two-dimensionai display; noise is removed 

by an operation of local averaging, i.e., of representing a box (-quantum) by 

the average of itself and all immediately adjacent boxes; the character line 

width is standardized; certain character features are then extracted and the 
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recognition Is based upon the existence of certain features. It is In the feature 

selection that the designer's Ingenuity Is manifested. These features may- 

Include different line orientations and straight line intersections, such as 

a T, inverted T, a V, a slant, etc. In some techniques the original character 

is quantized and then converted to binary form, and all subsequent operations 

are logical (performed by a digital computer). In most of the techniques 

location of character and size variations are special problems. 

The techniques of speech recognition are nicely described In C. Cherry'« 

book "On Human Communications", and In Bell Telephone Laboratories monographs. 

Speech Is represented In a two-dimensional time-frequency array which is obtained 

by passing the speech through an array of staggered narrow-band filters (in a 

device known as a VOCODER). Some particular speech recognition techniques 

attempt to extract properties from these arrays, such properties Including 

formant frequencies, etc. Special problems arise from the wide ranges In pitch 

and word duration among speakers. In addition to the other many subtleties of 

the spoken word. 

Language Translation 

Strictly speaking, language translation Is a problem In more specific 

Identification rather than in pattern recognition. However, many of the trans- 

lation processes do involve a search for patterns. For example, any parti- 

cular word sequence must be examined to see whether It has the pattern of a 

grammatically correct sentence, i,e., is the relationship of verb, noun, 

adjective, etc. consistent with the rules of syntax?. 

Turing Machines 

One of the early classical approaches to examination of the poten- 

tialities of machine learning was introduced by Turing. Claude Shannon presents 
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a description of a Universal Turing Machine In "Automata    Studies" (Princeton 

University Press, 1956), and his Introductory description Is here given 

exactly. 

"In a well-knovn paper , A.M. Turing defined a class of cooputing 

machines now known as Turing machines.    Ue may think of a Turing 

machine as composed of three parts — a control element, a reading 
v. 

and writing head, and an infinite tape.    The tape is divided into o 

sequence of squares each of which can carry any symbol from a finite 

alphabet.   The reading head will at a given time scan one square of 

the tape.   It can read the symbol written there and, under directions 

from the control element, can write a new symbol and also move one 

square to the right or left.    The control element is a device with a 

finite number of internal "states".   At a given time, the next 

operation of the machine is determined by the current state of the 

control element and the symbol that is being read by the reading 

head.    This operation will consist of three parts; first the printing 

of a new symbol in the present square (which may, of course, be the 

same as the symbol Just read);  second, the passage of the control 

element to a new state  (which may also be the same as the previous 

state); and third, movement of the reading head one square to the 

right or left. 

"In operation,  some finite portion of the tape is prepared with a 

starting sequence of symbols, the remainder of the tape being left 

blank (i.e.,  registering a particular "blank'' symbol).    The reading 

head is placed at a particular starting square and the machine 
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proceeds to coapute In accordance with Its rules of operation. In 

Turing's original formulation, alternate squares were reserved for 

the final answer, the others being used for intermediate calculations. 

Thle and other details of the original definition have been varied 

in later formulations of the theory. 

"Turing shoved that it Is possible to design a universal machine 

which will be able to act like any particular Turing machine when 

supplied with a descrlptloi, of that machine. The description is 

placed on the tape of the universal machine in accordance with a 

certain code, as Is also the starting sequence of the particular 

machine. The universal machine then imitates the operation of the 

particular rrachlne" . 

There are many detailed variations in the approaches outlined above. An- 

other way of looking nt. the subject is contributed by Bellman and Kalaba, and 

is built upon the dynamic prograrcming techniques which these men have developed. 

Further information en pattern recognition may be outlined from the bibliography. 

!  I 
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APPENDIX C 

As exoerinantal verification of the technique, the methods of 

Section 2 and 3 "'ere applied to the machine-learned recognition of spoken 

minerals.   The sequence of labeled events is a large sat of numerals, spoken 

ty different individuals, where each spoken word is labeled by one of the ten 

nunora]« it represents.   An unlcbel«»' spoken word is recognized as a specific 

numeral through its compnrison to each nf the ten catoRories by the functions 

developed from the labeled examples.   The ten categories of spoken numerals 

"0"  (zero) through ,l9n "ere repraaented by UOO diffarent utterances made by 

ten nale spea^rs.   The ten male speakers have regional accents dravn fron 

the north-east corner <"f the United States,    Ho attorr.pt TSC nade tc othenriso 

control the selection of speakers or their rate of speech. 

The model of the physical -."orld considered adequate to represent 

the speech events is obtained through use of an 18-channel Vocoder,   The 

Vocoder is a set of 10 stagger-tuned narrow band-pass filters which print 

out the "instanta-.eous" frnquency spectrum of the speech event as a function 

of time.    This is shovn in Figure C-l, «jhere frequency is plotted vertically, 

time horizontally, and the density of the spectrum fit a r;iv6n frequency and 

time is proportional to the grey level o." t^ sonograph recording at the 

corresponding time-frequency point.    The -^um^rlcal print-out of Figure C-l 

is obtained by di'-itizing the "bove sono^raph recor-is irto 18 frequency 

channels each sar.pled ?t the rate of 2° ir sec/sample.    Mote that the samples 

are orthogonal by construction because they renresent ••;aveforms that are 

disjoint either in froarency c: ti:-.e.    Tlie reoulting cell structure in the 

time-frequency plane represents a one-second long speech event as a vector 
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in a 900-dimensional space. Each dimension corresponds to a possible cell 

location and the coordinate value of a dimension is the intensity of the 

corresponding cell. In the flruro a three digit binary number (eight 

levels) represents the sonograph intensity, after the instantaneous total 

speech intensity is normalized by the action of a fast age. 

A computer »fas programmed to implement the tbory; and an increasing 

number of spoken numerals vere sequentially introduced from vhich the 

computer constructed the optimum metrics. A different metric was developed 

to measure similarity to ench of the ten categories. Typical results of 

the learning process are showi in Figure C-2. This figure contains four 

confusion matrices constructed for the cases where numoral recogiition was 

learned from 3, It, 7,  and 9 examples of each of the ten categories of digits.. 

The ordinate of a cell in the matrix signifies the digit which is spoken, 

the abscissa denotes the decision of the machine, and the number in the cell 

states the number of instances in uhich the stated decision was made. The 

number 1 in row 6 and column 0 of Flrnire C-2c, for example, denotes the fact 

that in one instance a spoken digit 6 was recognized as an 8. Note that the 

error rate decreases as the number of known examples of categories is increased. 

For the 9 examples per category no errors "ere made. This result is 

particularly interesting in view of the fact that the spoken digits which were 

tested were spoken by persons not included among those whose words were used 

as examples. 
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